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Part I

Foundations



Estimating the prob(default) using call option pricing

I Merton (1974) presents that there is a call option payoff in
every firm.

I If this is true, then we can use the well-established formula to
price a call option (Black-Scholes options pricing model
(1973), Merton (1974)) to estimate the probability that a firm
will default on payments.

I How?



What is a call option?
I A call option gives the investor the right (not obligation) to

buy a share at a pre-determined price (X ) within a
pre-determined period of time (T ).
For this right, the investor pays C .

I If the price of the share rises much higher than X during T ,
the investor gets to buy the share at X .

I If the price drops below X , the investor has the choice to not
buy.
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What is a firm
I The firm is constructed out of a combination of Equity + Debt
I Equity shareholders have control over the firm. Debt holders

have the promise that they will be paid (a fixed amount).
I When shareholders cannot pay the debt, they lose control to

the debt holders. This is called Default.
I As long as shareholders can pay the debt, they have the

upside. The upside is like a call option on the value of the
firm.
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Call option pricing at the heart of estimating prob(default)

I Basic idea:

1. Equity is a call option on firm’s asset value with debt as strike
price.

2. Firm’s shareholders hold a call option on the firm’s asset.

I Seminal papers:

1. Merton, R. C., 1974. On the pricing of corporate debt: the
risk structure of interest rate. Journal of Finance 29, 449-470.

2. Merton, R. C., 1977. An analytical derivation of the cost of
deposit insurance and loan guarantee. An application of
modern option pricing theory. Journal of Banking and Finance
1, 3-11.



Call option pricing at the heart of estimating prob(default)
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Part II

Operationalising Merton, 1974



Operationalising estimation of default risk

I What we know:

1. We see E , the equity market capitalisation of the firm
2. We see σE the equity volatility of the firm
3. We know the level of Debt, as the book value recorded in the

balance sheet.

I What we do not know:

1. We do not see V , the total value of the firm
2. We do not know σV , the volatility of the total assets of the

firm

We can setup two equations in two unknowns – what the KMV
model did.



The Kealhofer-Merton-Vasicek (KMV) model

I Debt: homogenous with maturity at time, T

I Capital structure of the firm: VA(t) = D(t) + E (t)

I Perfect markets: no coupons, no dividends, no frictions on
trading

I Asset dynamics: assets are traded, and prices follow GBM.

dVA = µAVAdt + σAVAdW

where VA is the value of the asset, σA is its volatility, µA is
the drift and dW is a Wiener process.



KMV methodology

I Using the analogy of the Black-Scholes model,

1. Equity, E = Call option, C
2. Debt, D = Strike, K
3. Value of the firm, VA = Equity price, S

I Then if the call option pricing formula is:

C (t) = S(t)Φ(d1)− e−r(T−t)K Φ(d2)

I Equity, E can be priced as:

E (t) = VA(t)Φ(d1)− e−r(T−t)DΦ(d2)

I Ito’s formula is used to show that:
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KMV model

I To find VA, σA, solve the non-linear system of equations:

f1(VE , σE ) : VA(t)Φ(d1)− e−r(T−t)K Φ(d2)− VE (t) = 0

f2(VE , σE ) :
VA

VE
Φ(d1)σA − σE = 0

I The solution is unique since ∂f1/∂VA = Φ(d1) (analogous to
δ in the original B-S).

I f1 is increasing in VA → f1(VA) has a unique solution.

I Similarly, we can see that f2(σE ) has a unique solution also.



The ultimate prize - Distance from default (DtD)

I Default is the instance when firm value falls below debt or
VA ≤ D.

I DtD(t) is the distance between the expected firm value and
the default point:

DtD(t) =
log (VA(t)

D ) + (r − 0.5σ2A)(T − t)

σA
√

T − t

I Probability of default: substitution into a normal CDF gives:

Pr(def )(t) = P[VA ≤ D] = Φ(−DtD)

I When DtD is measured as:

DtD =
VA − D

σAVA

It is interpreted as the number of standard deviations the firm
value is away from the default trigger.



Part III

The importance of volatility forecasting



A weak link in operationalising KMV: σE forecasts
I What the model requires is a forecast of σE over the coming

one year.
I The typical model of volatility forecasts use daily data as

input.
These forecast daily volatility.

I A thoughtful user of KMV scales this daily forecast by
√

252.
I However, this is not necessarily optimal.
I Some alternatives include:

1. Use the forecasting model to forecast daily values for the next
252 days, and then take an average before scaling by

√
(252).

2. If volatility is persistent, then a weighted average may be more
optimal.

3. Misspecification problems of using higher frequency data
models for lower frequency requirements (Drost and Nijman,
1993).
Volatility at lower frequency is lower than that at higher
frequency, and forecasts out of daily volatility models can be
biased.

I In this paper, we seek to do this optimally.



How sensitive is the DtD estimate to changes in σE ?
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Part IV

Some simple choices



Four plausible measure of volatility

1. Historical volatility (using daily returns)

2. Range(using intra-day price variation)

3. Implied volatility (using options prices data)

4. Exponentially weighted moving average (using daily returns)

Each are computed for a sample of liquid stocks.
Since the DtD is sensitive to both volatility and leverage, the
sample is separated into three sub-categories: low, medium and
high leverage by the debt-equity ratio.



A simple performance framework

I How do we measure that the forecast is ‘working’?
I Performance evaluation:

1. How well does the measure forecast the next day’s volatility
measured by returns squared?
This is the performance of the one-step ahead forecast.

2. How well does the measure forecast the one year out returns
squared?
This is the performance of the one-year ahead forecast.

I Report the RMSE for each measure, separately across the
three different categories of stocks by leverage.
In this presentation, results are for three stocks: Hindustan
Unilever Ltd. (low leverage), Mahindra & Mahindra Ltd.
(medium leverage), and Larsen & Toubro Ltd. (high leverage).



Measure 1: Historical volatility (HV)

I The standard deviation of returns is computed over the
previous 22 days.

I This is used as the forecast for the next day’s variance in the
one-step ahead forecast performance measurement.

I This is scaled by 252 as the forecast for the one-year ahead
forecast.
This is also what is used for the prob(def) estimation.



Measure 2: Range volatility

I Range is computed using the daily high and low prices for the
stock (Parkinson 1980).

I The formula to compute range is as follows:

Range =

√
1

4 log 2
(logH − logL)2

Here, H and L refer to the high and low price of the day,
respectively.

I Range for (t − 1) is used as the forecast for t.
It is scaled by 252 for the one-year ahead forecast, and used
for the DtD estimation.



Measure 3: Implied volatility (IV)

I This is the implied volatility calculated using the options
traded on the stock.

I It is analogous to the old CBOE VIX calculation and is the
average of 8 near-the-money option IVs, for call and put and
for near and next month maturities is taken (Whaley 1993).

I The methodology used in the calculation follows what is used
in Grover, Thomas (2012).

I IV for (t − 1) is used as the forecast for t in the one-step
ahead forecast.

I It is scaled by 252 for the one-year ahead forecast and the
DtD estimation.



Measure 4: Exponentially weighted moving average,
EWMA

I E (σt+1)2 = λr2t + λ2r2t−1 + λ3r2t−2 + . . .+ λk+1r2t−k + . . . =
=⇒ E (σt+1)2 = λr2t + (1− λ)E (σt)

2

I A higher weight is assigned to more recent returns.

I The smoothing parameter λ is taken to be 0.94 to generate a
long time series of exponentially declining weights.

EWMA(t) = λr2t + (1− λ)σ2t−1

I EWMA(t) is used as the forecast for t in the one-step ahead
forecast.

I It is scaled by 252 for the one-year ahead forecast and the
DtD estimation.



An example of volatility time series for a low leverage firm
(HUL)



DtD for HUL using different volatility measures



Performance evaluation: one-step ahead forecast RMSE

We compare the performance of each of the volatility measures by
comparing the estimate at t-1 with actual returns in period t.

RMSE =
√∑

|σ2t−1 − r2t |

RMSE
HV IV Range EWMA

HUL 11.8 12.3 10.5 12.1
M&M 13.2 14.8 12.4 13.2
L&T 13.7 15.2 11.3 14.0

Range performs ‘best’ in this setting but the Range-based DtD is
also the most volatile.



Part V

This is a non-standard volatility

forecasting problem



There is a lot of machinery available
I A great deal of more knowledge about volatility forecasting is

in place:
I ARCH family, deterministic forecasts
I Implied volatility: forward looking
I New measures – Realised Volatility, Range

I The most common use case for volatility forecast is in options
trading and for calculating the Value at Risk for capital
requirements.

1. For options trading, the most active options are 1-2 months
from maturity

2. For VaR calculations, the typical horizons are from 1 day out
to a fortnight out.

I Hence the prime instinct in this domain is to forecast volatility
over horizons going out to 1–2 months.

I For the DtD problem, we require 12 month forecasts.
I Another area in finance which requires longer horizon volatility

forecasts is portfolio management, where the forecasting
horizon can go from one quarter out to five years out.



How does this requirement change our thinking?

I Perhaps vol does behave like an ARMA model.
It can get shocked, but the average over the next one year will
be quite stable and it will be the long-run average.

I In this case, we have no problem!
We just estimate σE using the maximum history and ignore
local effects.

I On the other hand, we know that shocks to volatility are
extremely persistent!
While the IGARCH model is not correct, it performs surprising
well. (Sarma, Shah and Thomas, 2003)

I Perhaps the local effects persist out into the bulk of the
coming year. Then when working out the average for one
year, the local effects matter.



A possible middle ground?

Let us say:
Ht The model’s view of variance as of today
H̄ The volatility computed over all available data
ηt αHt + (1− α)H̄

I Ht is our best estimate for today, which varies a lot through
time, and

I H̄ is the time-invariant maximal-span estimate, and then we
have ηt(α) which is a linear combination.

Can we do some empirical experiments to discover what is a good
α?



Design a test rig

I We see N stocks, daily returns data

I Let’s pick K timepoints in the life of each stock

I At each timepoint, we know the true volatility from t to
t + 365

I We use these true values to compare how alternative
forecasters are faring.
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