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Structure of the talk

I Motivation: financial portfolio risk and capital requirement
I What is Value at Risk (VaR)?
I Calculating VaR
I An example to build intuition
I Volatility forecasting models and where it matters for VaR
I Choosing volatility forecasting models for VaR
I Limits of VaR
I Final thoughts



Financial portfolio risk



Everybody wants to quantify risk

I The trader wants to know much risk she has taken in her trading position.
I The trader’s boss, the financial firm, wants to know the risk of each trader, of

the firm and how the risk of each trader adds or subtracts from the firm risk.
I The firm’s regulators want to know the risk taken by the firm.



How much risk is appropriate?

I If the trader takes no risk, she will obtain no return.
I If the firm asks for very large buffers to protect against the failure of the firm,

then it will not make money.
I If the regulator asks firms for very large buffers, to drive down failure

probabilities to unreasonably low level, financial activities by regulated firms
will subside.

I If we say “SBI should hold enough equity capital to ensure that it will never
fail”. In this case, it will need to have 0 borrowing.



The idea of value at risk

I What is a loss so large, that it will be exceeded on 1% of the days?
I This is the “value at risk at a 99% level for a one day horizon”.
I In a year, there will be 2-3 days when the loss exceeds the VaR.



Example: VaR at derivatives clearing corporations
I Clearing corporations (CCs) guarantee settlement of exchange traded

derivatives trading.
How?

I By collecting a combination of initial margin and daily mark-to-market margin.
Latter is easy: Loss in the value of the position at the end of the day.
Former (initial margin) is difficult→ big enough to prevent a counterparty from
taking flight and small enough to not reduce returns.

I Initial margin not the only fall-back.
For example, derivatives CCs have • Broker balance sheet, • bank
guarantees, additional own capital, • the right to call for additional capital from
shareholders, • own capital.
The ability to guarantee settlement collapses only after using up all its own
equity capital.

I At the CC, VaR is used to calculate the initial margin such that the one-day
MTM loss will be greater than the initial margin on about the 2-3 worst days of
the year.
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Describing VaR



What is value-at-risk?

The VaR is the loss on a financial portfolio that will be exceeded with a known
probability.
In mathematical parlance, if
– the one–day rupee profit on a portfolio is x , and
– returns has a probability distribution function (pdf) f (x), then
– the VaR v at a 95% level is: ∫ v

−∞
f (x)dx = 0.05



Inputs to calculating the VaR

1. A known portfolio
(The VaR of a portfolio is not the sum of the VaR of individual assets).

2. A time horizon of interest.
Most investors calculate a VaR over a day. Corporations with assets that do
not have a daily mark–to–market valuation technology would calculate their
VaR over a longer horizon, say, a month.

3. A defined risk level
A 95% VaR is the loss that will be exceeded on 5 days out of a 100–days.

The VaR is generally reported in rupees.



Interpretation

“The value at risk of this position, on a one-day horizon, at a 99% level, is
Rs.1.34 million”

I This means that on 1% of the days, the loss will exceed Rs.1.34 million
I This does not mean that on the worst 1% of the days, the loss will be roughly

Rs.1.34 million.
I In a year of 250 trading days, 1% of the days occur 2-3 days of the time
I So this means: “In the worst 2-3 days of the year, the loss on this position will

exceed Rs.1.34 million”.



Why is VaR so useful?

I The mathematician says: “I have a full distribution – f (x ; θ). Choose an α and
locate the point on the distribution that maps to that level and you know what
the expected range of losses can be.”.

I The practical man says: “I cannot understand the full distribution f (x ; θ), but I
think I can use the VaR to set capital requirements that can cover losses in a
portfolio”.

I VaR is a tool to facilitate conversations between mathematician-statisticians
and the finance practitioner.
The first set know how to calculate it, the second set know how to use it!



Calculating VaR



How to calculate VaR?

I Financial market returns are not i.i.d.
I But let’s assume that they are.
I The dgp of financial returns is not stable.
I But let’s assume that it is. Let’s assume that the future will be like the past.
I These two wrong assumptions gives us a first and simplest way to calculate

VaR.



“Historical simulation” (“HS”)

1. Observe the portfolio values for a set of days: calculate changes every day.
2. Sort the data and pick the value that corresponds to 5% worst value.



Example of calculating the 95% VaR using HS

Portfolio: Rs.1,000,000 invested in the equity index for 30 days.
The following are the list of daily changes:

20000619 14415.30 20000703 16045.10 20000718 -11248.10
20000620 5555.85 20000705 9712.49 20000719 -18835.30
20000621 -21427.60 20000706 -6079.85 20000720 -8111.93
20000622 8841.25 20000707 527.29 20000721 -19104.20
20000623 -10843.10 20000710 -5252.30 20000724 -58580.30
20000626 -14057.00 20000711 5878.10 20000725 23363.70
20000627 1823.84 20000712 9698.95 20000726 -22984.30
20000628 10737.70 20000713 -7035.48 20000727 14908.20
20000629 15089.70 20000714 -8475.33 20000728 -3181.32
20000630 -14103.70 20000717 -20138.50 20000731 -712.50



The sorted values and the VaR

I Sort the list of the profits and losses in descending order.

-58580.30 -14103.70 -7035.48 1823.84 10737.70
-22984.30 -14057.00 -6079.85 5555.85 14415.30
-21427.60 -11248.10 -5252.30 5878.10 14908.20
-20138.50 -10843.10 -3181.32 8841.25 15089.70
-19104.20 -8475.33 -712.50 9698.95 16045.10
-18835.30 -8111.93 527.29 9712.49 23363.70

I The 95% VaR is the loss that can be exceeded 5% of the times in this sorted
list, is between (a loss of) Rs.22,984 and Rs.21,428.

I The 99% VaR is the loss that can be exceeded 1% of the times in this list,
which is a loss of greater than Rs. 58,580.



A parametric model

I A normal distribution for the same returns has a mean close to 0 and standard
deviation of 1.46% (daily).

I Then the one-day, 95% VaR for Rs.1,000,000 invested in this asset is:

1.96 ∗ 0.0146 ∗ 1000000 = Rs.28,616.00

I Problem with this approach:
Financial market returns are not normally distributed: there are fat tails and
volatility clustering.
Nonlinear products generate non-normal distributions.



A small example to build intuition



Three interesting series

I We look at time series returns for:
Nifty, INR/USD and one common stock - I T C LTD.

I Daily returns from 1992-01-07 to 2009-12-31, 4700 days of data.
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What do we see?

I Volatility clustering!
Low volatility periods are followed by low volatility periods and vice versa

I There is no “overall average volatility”
I Nifty is less volatile than I.T.C.
I Currency: Most volatile of the three even though the levels are small.

(But in 2003 and then in 2007 and 2017 things changed).
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Learnings

I Always have physical intuition about reality – visualise with plots and don’t just
focus on numbers.

I Move away from assumptions of i.i.d.
I Move away from assumptions about non-normality.

One way to do this is to build models of heteroscedasticity – constant mean,
but changing variance.



Simulations vs. real data
Simulated data: Constant σ Simulated data: Varying σ
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Volatility forecasting models



Varying volatility time series models: ARCH/GARCH

I Wide range of models for dependence in volatility.
I ARCH is the Auto-Regressive Conditional Heteroskedasticity (ARCH)

model, where ARCH(1) is written as:

rt = α0 + α1rt−1 + εt ; εt ∼ N(0,
√

ht)

ht = γ0 + γ1εt−1

I GARCH is the Generalised Auto-Regressive Conditional
Heteroskedasticity (GARCH) model where GARCH(1,1) is written as:

rt = α0 + α1rt−1 + εt ; εt ∼ N(0,
√

ht)

ht = γ0 + γ1ε
2
t−1 + β1ht−1

Here, ht is the next period volatility which is a function of the previous volatility
(ht−1) and previous period innovation (εt−1).



What works for these models

I They capture the real world data better.
I Even though they are linear models, there are modifications that capture

asymmetry (EGARCH) and non-linearity well (regime-switching GARCH).

I They can be extended into multivariate models as well: to model time-series
dependence in variance and covariance / correlation jointly.

I The distribution of returns after adjusting for variance dependence tend to be
more normal.

I They forecast volatility better than historical variance
→ better VaR estimates
→ better estimates of capital requirements for financial firms.
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What does not work for these models

I Too many choices!
I The translation into multi-variate forms is not easy.

Multivariate GARCH models often need simplifications to make estimations
tractable (DCC-GARCH models).

I These models are linear and deterministic: volatility may have a stochastic
nature.



Recent developments in volatility forecasts for VaR

I Stochastic volatility models (SV)
I Models to fit the tail behaviour of financial asset returns.

This includes
1. Extreme Value Theory and Copulas – as distributions for just the tail – and
2. Expected Loss models to capture the distribution beyond the VaR point estimate.

I Use of high frequency data to capture intra-day dependence, which is then
aggregated to create new models for volatility forecast.

I Use of asynchronous data – move from constant time periodicity to constant
volume periodicity to model dependence.

I Use of market data to directly observe volatility – Implied Volatility estimates
from options markets.

Problem: How to choose which fits best for VaR?



Evaluating model performance using VaR



Testing which volatility model fits the world best

I Simple idea: we use the volatility models to forecast VaR so that we can get
the correct capital requirement.
When we choose α = 95%, then daily VaR should be exceeded 5% of the
time, i.e. about 18 days a year.
Question: Does it do so?

I The volatility forecasting model where the VaR is exceeded at the “correct” α
number of times is the “best” forecasting model.



Volatility model performance evaluation using VaR

I Suppose there are two forecasting models which give two forecasts of VaR
(V1,V2).

I Compare (V1,V2) against actual return, rt+1.
If V1 < rt+1 and V2 > rt+1, then
V1 is better than V2.

I Statistical test: Repeat this many times, and see how many times V1 < r and
V2 < r .
Which comes closer to p is the better model.

I Real world complications: but there should be no clustering!
I Real world complications: in the above test, the magnitude of difference

between Vt and rt doesn’t matter. But we care about how much this difference
is as banking supervisor.
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Tests of forecast performance using VaR

I Performance evaluation using VaR #1: Statistical unconditional coverage and
conditional coverage tests by Christoffersen (1998).
Transform the data on rt , vt into It , where:

1. It = 1 if vt > rt , and
2. It = 0 if not.

The forecasts are efficient if they show both correct unconditional coverage
and no independence.

I Performance evaluation #2: Loss function approach by Lopez (1998).
Calculate lt as:

1. Example 1: lt = (rt − vt)
2 if vt > rt+1; 0 if not.

2. Example 2: lt = (rt − vt)
2 if vt > rt+1; −αvt if not.

In Example 2, the larger the error, the greater the penalty to the model.
I Sarma et al (2003) used both these tests to find the “best” volatility

forecasting model for the Indian equity index to set the initial margin for
derivatives trading.
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A technical digression



Desirable properties for risk measures

Purpose: to summarise the entire distribution of value returns X by a single
measure.

Features:
I 1. Monotonicity: if X1 ≤ X2, then RM(X1) ≤ RM(X2)

I 2. Translation invariance: RM(X + C) = RM(X ) + C where C is cash.
Higher levels of cash means lower the risk of the portfolio.

I 3. Homogeneity: V (mX ) = mV (X )
A portfolio with the same constituents that is larger by a multiplier m will have
a higher risk value, scaled up by multiplier m.

I 4. Subadditivity: V (X1 + X2) ≤ V (X1) + V (X2)
Combining portfolios cannot increase risk.
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Is VaR a “good measure”?

I VaR fits the criteria of monotonicity and translation invariance (#1 and #2).

I On homogeneity (#3):
VaR is calculated on returns distribution of the portfolio.
But large portfolios have a larger price impact. If this is not taken into account,
VaR does not satisfy the homogeneity property.

I Subadditivity of credit portfolios may report VaR as having a higher VaR than
an investment in any single credit instrument.

VaR can be dangerous is the simplicity: a single measure that captures the edge
of how bad things can get. But does not tell us everything about how bad things
can get.
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Final thoughts



VaR is an approximation with several assumptions

1. Distribution of the returns
2. Dependence on observed data and patterns – backward looking bias towards

most recent observations.
3. Pro-cyclicality
4. Poor at dealing with structural change
5. Ease of use may not be a good thing – standardising risk perceptions may not

be the best thing from a “systemic risk” point of view (regulatory bias).
6. Does not explicitly incorporate different factors of risk: market liquidity, credit.
7. Without a full set of markets to lay off different types of risks, a VaR

measurement is ineffective.
8. An illusion of safety: pushing α from 99.9999% to 99.999999% gets very little

additional safety and can be expensive to the financial sector.

All these are areas where innovative research can be useful to provide feedback
and corrections on how to measure and use VaR better.



Learnings for financial sector risk management
I A fairly good VaR estimate is possible.
I But marking to market is the first required step.

Without a “current” value of the portfolio, volatility prediction is rendered
ineffective.

I In most liquid markets of the world (e.g. the US equity market, the global
currency market), there are several problems with using VaR.
In the less liquid markets (e.g. financial markets in India, e.g. credit risk)
these problems can be exacerbated.
If we cannot get a current value, we can neither measure risk nor manage it
well.

I Illiquid securities should have higher capital requirements since uncertainty
about their value is high

I An optimal path to risk management will be to focus policy on making markets
more liquid.
With liquid markets, we can get better (“current”) values.
With current values, the Bank can manage risk better.
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Thank you.
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