The informational role of algorithmic traders in the option market

Rohini Grover

IGIDR Finance Research Group

May 29, 2015

Algorithmic traders and their role in financial markets

- Technological advances in financial markets influx of algorithmic traders (AT: use computer algorithms to place orders).
 Broggard, 2010: > 50% trades come from AT in US equity markets.
- AT can process information faster than human traders.
- Speed enables AT to become informed analyse trading activity of other informed investors (Harris, 2003; Frino et al., 2012).
- Do they generate informed trading in markets?

- AT may become informed by engaging in:
 - **1 Directional trading** information related to future underlying asset prices.

- AT may become informed by engaging in:
 - 1 Directional trading information related to future underlying asset prices.
 - 2 Volatility trading information related to future underlying asset volatility.

- AT may become informed by engaging in:
 - **1 Directional trading** information related to future underlying asset prices.
 - Volatility trading information related to future underlying asset volatility.
- To exploit their private information:
 - Directional AT may choose to trade in the spot or option market.
 - Volatility AT can trade only in the option market.

- AT may become informed by engaging in:
 - **1 Directional trading** information related to future underlying asset prices.
 - **2** Volatility trading information related to future underlying asset volatility.
- To exploit their private information:
 - Directional AT may choose to trade in the spot or option market.
 - Volatility AT can trade only in the option market.
- Theoretically, directional AT would also trade in the option market higher leverage of options (Black, 1975).
- Option prices may move due to either of the two types of informed trading.

- AT may become informed by engaging in:
 - **1 Directional trading** information related to future underlying asset prices.
 - **2** Volatility trading information related to future underlying asset volatility.
- To exploit their private information:
 - Directional AT may choose to trade in the spot or option market.
 - Volatility AT can trade only in the option market.
- Theoretically, directional AT would also trade in the option market higher leverage of options (Black, 1975).
- Option prices may move due to either of the two types of informed trading.
- Do AT generate informed trading in option markets?

- Examines whether AT generate informed trading in index option market.
- Analysis the impact of ATs' net buying pressure (NBP) on prices and implied volatilities (IVs) of Nifty index options.

- Examines whether AT generate informed trading in index option market.
- Analysis the impact of ATs' net buying pressure (NBP) on prices and implied volatilities (IVs) of Nifty index options.
- There are three possible explanations that relate NBP and IVs:
 - There are limits to arbitrage in the market liquidity suppliers face increased risk – +ve relation between NBP and IV (limits-to-arbitrage).

- Examines whether AT generate informed trading in index option market.
- Analysis the impact of ATs' net buying pressure (NBP) on prices and implied volatilities (IVs) of Nifty index options.
- There are three possible explanations that relate NBP and IVs:
 - 1 There are limits to arbitrage in the market liquidity suppliers face increased risk +ve relation between NBP and IV (limits-to-arbitrage).
 - 2 Option prices move when investors' expectation about future volatility changes – +ve relation between NBP and IV (volatility-learning).

- Examines whether AT generate informed trading in index option market.
- Analysis the impact of ATs' net buying pressure (NBP) on prices and implied volatilities (IVs) of Nifty index options.
- There are three possible explanations that relate NBP and IVs:
 - There are limits to arbitrage in the market liquidity suppliers face increased risk – +ve relation between NBP and IV (limits-to-arbitrage).
 - 2 Option prices move when investors' expectation about future volatility changes +ve relation between NBP and IV (volatility-learning).
 - Investors' expectation about future price movements changes IV of calls +vely related to NBP of calls and -vely related to NBP of puts and vice-versa (direction-learning)

- Examines whether AT generate informed trading in index option market.
- Analysis the impact of ATs' net buying pressure (NBP) on prices and implied volatilities (IVs) of Nifty index options.
- There are three possible explanations that relate NBP and IVs:
 - There are limits to arbitrage in the market liquidity suppliers face increased risk – +ve relation between NBP and IV (limits-to-arbitrage).
 - 2 Option prices move when investors' expectation about future volatility changes +ve relation between NBP and IV (volatility-learning).
 - Investors' expectation about future price movements changes IV of calls +vely related to NBP of calls and -vely related to NBP of puts and vice-versa (direction-learning)
- Use five minute obs. to estimate regression models test these hypotheses in the Indian index option market.
- Differentiate directional trading from noise trading test whether NBP has prediction power for future index returns.

Clean setting

- Uses a unique dataset on the Nifty index options that identifies both the:
 - initiator of an option trade buyer or seller
 - class of the initiator AT or non-AT
- This dataset has two advantages, does not rely on:
 - 1 Algorithms to classify buy/sell trades (Lee and Ready, 1991).
 - Proxies for AT that lead to weak identification (Hendershott et al., 2011)
- The dataset also identifies traders as one of:
 - 1 Custodians (C) institutional investors
 - 2 Proprietary (P)
 - Non-custodian non-proprietary (NCNP) primarily individual investors. Also include hedge funds and brokers trading for clients.
- Helps contrast the impact of an investor group within AT/non-AT.

For instance, custodians' demand for OTM puts to hedge their portfolios may affect IVs differently.

What do I find?

- The direction-learning and volatility-learning hypotheses do not hold for AT: neither in aggregate, nor for any specific investor sub-group within AT.
- NBP of AT has no prediction power for future index returns.
- To contrast with non-AT, the direction-learning hypothesis holds for non-AT in aggregate as well as for each investor subgroup.
- NBP of non-AT has prediction power for future index returns.
- Custodian group within non-AT has lowest predictability for future index returns.

Data description

- Trades and orders information for trader types and volume records in the Nifty index options market.
- The time period of analysis is from January 2009 August 2013.
- The orders and trades are matched to clearly identify buy/sell initiated trades.
- NBP is computed as: (No of buyer initiated contracts No of seller initiated contracts) × option's delta
- One and three month MIBOR rates as proxy for risk-free rates obtained from NSE.
- Nifty daily dividend yield obtained from NSE.

Slice of the dataset

> dtable

		Time	Symbol	Expiry	Strike	OptionT	ype		
1:	2013-01-01	09:15:00	bbbbbNIFTY	31Jan2013	5800		PΕ	35.00	
2:	2013-01-01	09:15:00	bbbbbNIFTY	31Jan2013	6000		PΕ	108.00	
3:	2013-01-01	09:15:00	bbbbbNIFTY	31Jan2013	6000		PΕ	108.00	
4:	2013-01-01	09:15:00	bbbbbNIFTY	31Jan2013	6000		PΕ	108.00	
5:	2013-01-01	09:15:00	bbbbbNIFTY	31Jan2013	6000		PΕ	103.50	
428191:	2013-01-01	15:29:59	bbbbbNIFTY	31Jan2013	5900		CE	151.30	
428192:	2013-01-01	15:29:59	bbbbbNIFTY	31Jan2013	6300		CE	8.60	
428193:	2013-01-01	15:29:59	bbbbbNIFTY	31Jan2013	6100		CE	47.65	
428194:	2013-01-01	15:29:59	bbbbbNIFTY	31Jan2013	6200		CE	21.65	
428195:	2013-01-01	15:30:00	bbbbbNIFTY	28Mar2013	5500		PΕ	22.85	
	TradeQty B	uyAlgoId I	BuyClientId	SellAlgoId	SellCl	lientId :	BuyS	ellInit	iator
1:	200	NAL	NCNP	NAL		P			1
2:	500	NAL	NCNP	NAL		P			1
3:	500	NAL	NCNP	NAL		P			1
4:	1500	NAL	NCNP	NAL		NCNP			1
5:	2500	NAL	NCNP	NAL		NCNP			1
428191:	50	AL	P	NAL		NCNP			1
428192:	100	NAL	NCNP	AL		P			1
428193:	50	NAL	NCNP	AL		NCNP			1
428194:	100	NAL	NCNP	NAL		NCNP			0
428195:	200	NAL	P	NAL		NCNP			0

Moneyness category definitions – Bollen and Whaley (2004)

Call Category	Delta range	Put Category	Delta range
1 DITM	$0.875 < \Delta_c \le 0.98$	1 DOTM	$-0.125 < \Delta_p \le -0.02$
2 ITM	$0.625 < \Delta_c \le 0.875$	2 OTM	$-0.375 < \Delta_p \le -0.125$
3 ATM	$0.375 < \Delta_c \le 0.625$	3 ATM	$-0.625 < \Delta_p \le -0.375$
4 OTM	$0.125 < \Delta_c \le 0.375$	4 ITM	$-0.875 < \Delta_p \le -0.625$
5 DOTM	$0.020 < \Delta_c \le 0.125$	5 DITM	$-0.980 < \Delta_p \le -0.875$

Type of investors in the Indian index option market

Prop. of trades initiated across investor types

Prop. of trades initiated, AT vs non-AT

The number of Nifty index options traded across investor types

	AT				
	Calls	3	Puts		
Investor	No. of	Prop. of	No. of	Prop of	
type	Contracts	Total	Contracts	Total	
Custodian	120,143,362	0.054	117,854,916	0.049	
Props	298,562,393	0.166	295,174,799	0.166	
NCNPs	50,349,096	0.031	50,085,194	0.031	
Custodian	52,241,877	0.036	54,649,474	0.035	
Props	254,810,471	0.086	251,874,215	0.085	
NCNP	341,192,418	0.135	311,559,993	0.126	

■ There are 51% calls traded and 49% puts traded.

- There are 51% calls traded and 49% puts traded.
- In the KOSPI 200 options market, there are more calls traded than puts while the reverse is true for S&P 500 index options.

- There are 51% calls traded and 49% puts traded.
- In the KOSPI 200 options market, there are more calls traded than puts while the reverse is true for S&P 500 index options.
- For index calls, the ATM and OTM options are the most active.

- There are 51% calls traded and 49% puts traded.
- In the KOSPI 200 options market, there are more calls traded than puts while the reverse is true for S&P 500 index options.
- For index calls, the ATM and OTM options are the most active.
- For index puts, OTM puts are the most active. Followed by ATM puts and DOTM puts.

- There are 51% calls traded and 49% puts traded.
- In the KOSPI 200 options market, there are more calls traded than puts while the reverse is true for S&P 500 index options.
- For index calls, the ATM and OTM options are the most active.
- For index puts, OTM puts are the most active. Followed by ATM puts and DOTM puts.
- Custodians initiated 17.4% of the trades. Out of which 10.3% initiated by AT and 7.1% by non-AT.

- There are 51% calls traded and 49% puts traded.
- In the KOSPI 200 options market, there are more calls traded than puts while the reverse is true for S&P 500 index options.
- For index calls, the ATM and OTM options are the most active.
- For index puts, OTM puts are the most active. Followed by ATM puts and DOTM puts.
- Custodians initiated 17.4% of the trades. Out of which 10.3% initiated by AT and 7.1% by non-AT.
- Props initiated 50.3% of the trades. Out of which 33.2% initiated by AT and 17.1% by non-AT.

- There are 51% calls traded and 49% puts traded.
- In the KOSPI 200 options market, there are more calls traded than puts while the reverse is true for S&P 500 index options.
- For index calls, the ATM and OTM options are the most active.
- For index puts, OTM puts are the most active. Followed by ATM puts and DOTM puts.
- Custodians initiated 17.4% of the trades. Out of which 10.3% initiated by AT and 7.1% by non-AT.
- Props initiated 50.3% of the trades. Out of which 33.2% initiated by AT and 17.1% by non-AT.
- NCNP initiated 32.3% of the trades. Out of which 6.1% initiated by AT and 26.2% by non-AT.

- There are 51% calls traded and 49% puts traded.
- In the KOSPI 200 options market, there are more calls traded than puts while the reverse is true for S&P 500 index options.
- For index calls, the ATM and OTM options are the most active.
- For index puts, OTM puts are the most active. Followed by ATM puts and DOTM puts.
- Custodians initiated 17.4% of the trades. Out of which 10.3% initiated by AT and 7.1% by non-AT.
- Props initiated 50.3% of the trades. Out of which 33.2% initiated by AT and 17.1% by non-AT.
- NCNP initiated 32.3% of the trades. Out of which 6.1% initiated by AT and 26.2% by non-AT.
- AT initiated 49.6% trades while non-AT initiated 50.4% trades.

The NBP of Nifty index options across all investors

	Α	ιΤ	NON-AT		
	Calls	Puts	Calls	Puts	
Investor	No. of	No. of	No. of	No. of	
Type	Contracts	Contracts	Contracts	Contracts	
Custodian	137,011	154,153	519,281	457,947	
Props	301,481	-111,538	-1,480,899	-802,174	
NCNP	-141,205	-65,311	330,476	-286,218	

- Among AT:
 - 1 Custodians are net buyers of calls and puts.
 - Props are net buyers of calls and net sellers of puts.
 - 3 NCNP are net sellers of calls and puts.

Among AT:

- 1 Custodians are net buyers of calls and puts.
- Props are net buyers of calls and net sellers of puts.
- NCNP are net sellers of calls and puts.

Among non-AT:

- 1 Custodians are net buyers of calls and puts.
- Props are net sellers of calls and puts.
- 3 NCNP are net buyers of calls and net sellers of puts.

- Among AT:
 - Custodians are net buyers of calls and puts.
 - Props are net buyers of calls and net sellers of puts.
 - 3 NCNP are net sellers of calls and puts.
- Among non-AT:
 - Custodians are net buyers of calls and puts.
 - Props are net sellers of calls and puts.
 - 3 NCNP are net buyers of calls and net sellers of puts.
- Overall, I find that there is net selling of calls and puts.
- This is contradictory to that found in SPX and KOSPI index options.
- AT are net buyers of calls and net sellers of puts.
- While non-AT are net sellers of calls and puts.
- The large net buying pressure of OTM index puts among custodians suggests there preference for OTM puts for portfolio insurance.

Relationship between NBP of calls and puts for AT

Relationship between NBP of calls and puts for non-AT

The correlation between NBP of calls and puts

- For AT:
 - 1 $\rho_{Total} = -0.5$
 - $\rho_C = 0.09; \rho_P = -0.52; \rho_{NCNP} = -0.66$
- For non-AT:
 - 1 $\rho_{Total} = -0.66$
 - $\rho_C = 0.18; \rho_P = -0.51; \rho_{NCNP} = -0.53$

Empirical specification

Methodology

- Test the three hypotheses through regression models.
- The change in avg. IV of options is regressed in a moneyness category on:
 - 1 index return,
 - 2 index trading volume,
 - 3 NBP, and
 - 4 lagged changes in avg. IV.
- Test to distinguish directional trading from noise trading.
- Current NBP is regressed on future index returns to test whether it has any prediction power for future index returns.

Regression model

- Regressions are run for ATM calls, ATM puts, OTM calls, and OTM puts.
- They are specified as follows:

$$\Delta ATM_\sigma_t = \alpha_0 + \alpha_1 RS_t + \alpha_2 VS_t + \alpha_3 ATM_D_{1,t} + \alpha_4 ATM_D_{2,t} + \alpha_5 \Delta \sigma_{t-1} + \epsilon_t$$

$$\Delta OTM_\sigma_t = \alpha_0 + \alpha_1 RS_t + \alpha_2 VS_t + \alpha_3 OTM_D_{1,t} + \alpha_4 ATM_D_{2,t} + \alpha_5 \Delta \sigma_{t-1} + \epsilon_t$$

- **1** $\triangle ATM_\sigma_t$ is the change in avg. IV of ATM calls (or puts),
- ΔOTM_{σ_t} is the change in avg. IV of OTM calls (or puts) at five minute time interval t.
- \mathbf{S}_t is index return during the time interval t.
- 4 VS_t is summed trading volume of Nifty index over t interval expressed in million of rupees.
- 5 ATM_D_t and OTM_D_t is the summed net buying pressure of ATM calls or puts and OTM calls or puts during t.

■ Limits to arbitrage: -ve coefficient i.e. $\alpha_5 < 0$. Liquidity suppliers re-balance their portfolio \implies -ve serial correlation between changes in IV

- Limits to arbitrage: -ve coefficient i.e. $\alpha_5 < 0$. Liquidity suppliers re-balance their portfolio \implies -ve serial correlation between changes in IV
- Volatility-learning: No effect i.e. α₅ = 0.
 Information already reflected in option prices and IVs no serial correlation between changes in IV.

- Limits to arbitrage: -ve coefficient i.e. $\alpha_5 < 0$. Liquidity suppliers re-balance their portfolio \implies -ve serial correlation between changes in IV
- Volatility-learning: No effect i.e. $\alpha_5 = 0$. Information already reflected in option prices and IVs – no serial correlation between changes in IV.
- **Direction-learning**: **-ve** coefficient i.e. $\alpha_5 < 0$. +ve shock known to informed investors at t – buy calls and sell puts – call IVs \uparrow and put IVs \downarrow .

- Limits to arbitrage: -ve coefficient i.e. $\alpha_5 < 0$. Liquidity suppliers re-balance their portfolio \implies -ve serial correlation between changes in IV
- Volatility-learning: No effect i.e. $\alpha_5 = 0$. Information already reflected in option prices and IVs – no serial correlation between changes in IV.
- Direction-learning: -ve coefficient i.e. α₅ < 0.
 +ve shock known to informed investors at t − buy calls and sell puts − call IVs ↑ and put IVs ↓.
 - At t+1, information arrives in the spot market index price \uparrow , call IVs \downarrow , and put IVs $\uparrow \implies$ -ve serial correlation between changes in IV.

- For changes in ATM call or put IV, the effect of NBP of:
 - 1 ATM calls and puts +ve but not equal i.e. $\alpha_3, \alpha_4 > 0$ and $\alpha_3 \neq \alpha_4$ (limits to arbitrage)

- For changes in ATM call or put IV, the effect of NBP of:
 - **1** ATM calls and puts +ve but not equal i.e. α_3 , $\alpha_4 > 0$ and $\alpha_3 \neq \alpha_4$ (limits to arbitrage)
 - 2 ATM calls and puts +ve and equal i.e. $\alpha_3, \alpha_4 > 0$ and $\alpha_3 = \alpha_4$ (volatility-learning)

- For changes in ATM call or put IV, the effect of NBP of:
 - 1 ATM calls and puts +ve but not equal i.e. α_3 , $\alpha_4 > 0$ and $\alpha_3 \neq \alpha_4$ (limits to arbitrage)
 - 2 ATM calls and puts +ve and equal i.e. α_3 , $\alpha_4 > 0$ and $\alpha_3 = \alpha_4$ (volatility-learning)
- For changes in ATM call (put) IV, the effect of NBP of:
 - ATM calls +ve (-ve) and ATM puts -ve (+ve) (direction-learning)

- For changes in ATM call or put IV, the effect of NBP of:
 - 1 ATM calls and puts +ve but not equal i.e. α_3 , $\alpha_4 > 0$ and $\alpha_3 \neq \alpha_4$ (limits to arbitrage)
 - 2 ATM calls and puts +ve and equal i.e. α_3 , α_4 > 0 and $\alpha_3 = \alpha_4$ (volatility-learning)
- For changes in ATM call (put) IV, the effect of NBP of:
 - ATM calls +ve (-ve) and ATM puts -ve (+ve) (direction-learning)
- For changes in OTM call or put IV, the effect of NBP of:
 - 1 OTM options higher than ATM options i.e. $\alpha_3 > \alpha_4$ and α_3 , $\alpha_4 > 0$ (limits to arbitrage)

- For changes in ATM call or put IV, the effect of NBP of:
 - 1 ATM calls and puts +ve but not equal i.e. α_3 , $\alpha_4 > 0$ and $\alpha_3 \neq \alpha_4$ (limits to arbitrage)
 - 2 ATM calls and puts +ve and equal i.e. α_3 , α_4 > 0 and $\alpha_3 = \alpha_4$ (volatility-learning)
- For changes in ATM call (put) IV, the effect of NBP of:
 - ATM calls +ve (-ve) and ATM puts -ve (+ve) (direction-learning)
- For changes in OTM call or put IV, the effect of NBP of:
 - OTM options higher than ATM options i.e. $\alpha_3 > \alpha_4$ and α_3 , $\alpha_4 > 0$ (limits to arbitrage)
 - 2 OTM options less than ATM options i.e. $\alpha_3 < \alpha_4$ and $\alpha_3, \alpha_4 > 0$ (volatility-learning)

- For changes in ATM call or put IV, the effect of NBP of:
 - **1** ATM calls and puts +ve but not equal i.e. α_3 , $\alpha_4 > 0$ and $\alpha_3 \neq \alpha_4$ (limits to arbitrage)
 - 2 ATM calls and puts +ve and equal i.e. α_3 , α_4 > 0 and $\alpha_3 = \alpha_4$ (volatility-learning)
- For changes in ATM call (put) IV, the effect of NBP of:
 - ATM calls +ve (-ve) and ATM puts -ve (+ve) (direction-learning)
- For changes in OTM call or put IV, the effect of NBP of:
 - OTM options higher than ATM options i.e. $\alpha_3 > \alpha_4$ and α_3 , $\alpha_4 > 0$ (limits to arbitrage)
 - 2 OTM options less than ATM options i.e. $\alpha_3 < \alpha_4$ and α_3 , $\alpha_4 > 0$ (volatility-learning)
- For changes in OTM call (put) IV,
 - The effect of NBP of calls (puts) +ve and puts (calls) -ve (direction-learning)

Robust regression results

- All coefficients of index returns, α_1 's are **-ve** and significant at 5%.
- This is consistent with the leverage hypothesis.
- The coefficients of traded volume, α₂'s are -ve for calls while they are +ve for puts. Significant at 5% level.
- Price of a call (put) tends to \downarrow (↑) if stocks are more actively traded.
- All coefficients of lagged IVs, α_5 's in all regressions are **-ve** and significant at 5%.
 - Consistent with the limits to arbitrage and direction-learning hypotheses.

- The main test of information effect of NBP is revealed in the coefficients of NBP, α_3 's and α_4 's.
- The coefficients of options own net buying pressure (ATM calls for ATM calls, ATM puts for ATM puts, OTM calls for OTM calls, and OTM puts for OTM puts):
 - 1 AT: -ve and significant across most categories of investors (except NCNP's for OTM calls and puts).
 - 2 non-AT: +ve and significant across all investor categories.

- The coefficients of net buying pressure of ATM calls for OTM calls and ATM puts for OTM puts, α_4' s:
 - 1 AT: mostly -ve and significant
 - 2 non-AT: all +ve and significant
- The coefficients of net buying pressure of other options (ATM puts for ATM and OTM calls, and ATM calls for ATM and OTM puts), α₄'s:
 - 1 AT: -ve and significant
 - 2 non-AT: -ve and significant

To distinguish noise trading from directional trading

- Noise trading: Investors trade based on intuition rather than superior information.
- Effect of NBP on IV is same as direction-learning (Kang and Park, 2008).
- To distinguish the two, we test whether current NBP has any prediction power for future index returns.

To distinguish noise trading from directional trading

- Noise trading: Investors trade based on intuition rather than superior information.
- Effect of NBP on IV is same as direction-learning (Kang and Park, 2008).
- To distinguish the two, we test whether current NBP has any prediction power for future index returns.
- Estimate the following equation:

$$NBP_t = \alpha_0 + \sum_{i=-2}^{2} \alpha_{i+3} r_{t+i} + \alpha_6 NBP_{t-1} + \epsilon_t$$

- Noise trading: α_4 =0 and α_5 =0.
- Directional trading: $\alpha_4 > 0$ for calls and < 0 for puts.

Robust regression results

- For AT, most of the coefficients for r_{t+1} are **insignificant** for calls and puts.
- The NBP of AT has no predictive power.
- Consistent with earlier results that direction-learning not true for AT.
- For non-AT, all coefficients are +ve and significant for calls.
 (except ATM puts for custodians)
- All coefficients are -ve and significant for puts. (except ITM puts for NCNP and ATM puts for custodians)
- The NBP of non-AT has prediction power for future index returns.

- These result are in contrast to other studies that find a link between AT and informed trading (Hendershott and Riordan, 2009; Frino et al., 2012)

- These result are in contrast to other studies that find a link between AT and informed trading (Hendershott and Riordan, 2009; Frino et al., 2012)
- On the other hand, non-AT are directional traders in this market.
- They exploit their private information by trading in the option market prior to the spot market.

- These result are in contrast to other studies that find a link between AT and informed trading (Hendershott and Riordan, 2009; Frino et al., 2012)
- On the other hand, non-AT are directional traders in this market.
- They exploit their private information by trading in the option market prior to the spot market.
- NBP of custodians within non-AT has least or no predictive power for future index returns.

- These result are in contrast to other studies that find a link between AT and informed trading (Hendershott and Riordan, 2009; Frino et al., 2012)
- On the other hand, non-AT are directional traders in this market.
- They exploit their private information by trading in the option market prior to the spot market.
- NBP of custodians within non-AT has least or no predictive power for future index returns.
- In many emerging markets foreign institutional investors (FIIs) play an aggressive informational role (Chang et al., 2009; Wen-liang and He, 2014).
- Not true for India weak participation by FIIs regulatory constraints.
- I find that only 17.4% trades initiated by custodians (mostly FIIs).

References

- R packages: data.table, robustbase, texreg, xts, fOptions, parallel
- Bollen NP, Whaley RE (2004). "Does net buying pressure affect the shape of implied volatility functions" The Journal of Finance, 59(2), 711-753.
- Kang J, Park HJ (2008). "The information content of net buying pressure: Evidence from the KOSPI 200 index option market" Journal of Financial Markets, 11(1), 36-56.
- Grover (2014). "The informational role of algorithmic traders in the option market" IGIDR Working Paper. https://ifrogs.org/papers.html

Thank you

Appendix

The number of Nifty index options traded across investor types

		Α	Т			ION	N-AT	
	Calls	3	Puts		Calls	;	Puts	;
Investor	No. of	Prop. of	No. of	Prop of	No. of	Prop. of	No. of	Prop. of
type	Contracts	Total	Contracts	Total	Contracts	Total	Contracts	Total
					C			
1	1,852,299	0.001	31,776,160	0.011	797,118	0.001	15,756,919	0.009
2	11,000,099	0.005	44,986,156	0.019	4,448,935	0.004	22,115,253	0.014
3	37,315,032	0.018	30,784,031	0.014	14,908,034	0.010	12,946,719	0.009
4	48,151,541	0.021	8,643,202	0.004	20,992,805	0.014	3,257,601	0.003
5	21,824,391	0.009	1,665,367	0.001	11,094,985	0.007	572,982	0.000
Custodians	120,143,362	0.054	117,854,916	0.049	52,241,877	0.036	54,649,474	0.035
					P			
1	6,949,912	0.004	64,246,322	0.030	3,695,969	0.001	56,955,240	0.017
2	37,694,144	0.024	112,542,870	0.062	25,942,681	0.010	101,178,387	0.034
3	93,625,260	0.056	81,463,716	0.050	84,126,078	0.030	72,127,324	0.026
4	112,639,329	0.060	30,205,956	0.020	91,360,386	0.032	18,462,453	0.007
5	47,653,748	0.021	6,715,935	0.004	49,685,357	0.013	3,150,811	0.001
Props	298,562,393	0.166	295,174,799	0.166	254,810,471	0.086	251,874,215	0.085
				NC	NP			
1	1,573,962	0.001	8,394,542	0.004	5,792,129	0.003	55,292,434	0.018
2	7,875,887	0.005	17,306,224	0.010	40,083,963	0.017	124,528,061	0.051
3	18,343,956	0.012	17,119,880	0.011	131,447,172	0.055	100,937,908	0.042
4	16,276,916	0.009	5,850,556	0.004	121,022,369	0.048	26,338,246	0.012
5	6,278,375	0.003	1,413,992	0.001	42,846,785	0.012	4,463,344	0.002
NCNPs	50,349,096	0.031	50,085,194	0.031	341,192,418	0.135	311,559,993	0.126

The NBP of Nifty index options across all investors

	A	T	NON-AT			
	Calls	Puts	Calls	Puts		
Delta	No. of No. o		No. of	No. of		
Class	Contracts	Contracts	Contracts	Contracts		
		С				
1	-241,069.056	25,581.11	-26,474.40	54,961.97		
2	288,820.441	137,827.00	114,904.31	448,781.99		
3	191,752.010	105,943.09	298,833.27	127,213.27		
4	-116,565.935	23,688.40	113,002.21	-81,220.27		
5	14,074.032	-138,886.43	19,015.65	-91,789.37		
Totals	137,011.492 154,153.18		519,281.04 457,947.			
1	-187,185.717	42,179.57	-227,306.05	-66,187.69		
2	1,028,865.238	-1,280,340.82	208,264.17	-925,377.55		
3	924.557	457,909.10	-409,379.07	-42,941.77		
4	-512,836.662	723,446.57	-925,204.47	351,054.36		
5	-28,286.379	-54,732.76	-127,274.47	-118,721.41		
Totals	301,481.038	-111,538.35	-1,480,899.89	-802,174.06		
		NCN	IP			
1	-102,033.920	-13,972.63	-36,842.78	-72,223.08		
2	128,287.588	-190,053.53	-300,297.15	157,088.24		
3	-41,676.501	-45,721.41	387,729.16	74,745.35		
4	-117,279.676	156,600.00	185,779.54	-290,448.27		
5	-8,503.009	27,835.88	94,107.34	-155,380.43		
Totals	-141,205.516	-65,311.70	330,476.11	-286,218.18		

Impact of NBP on the changes of ATM volatility

Category	D ₁	D ₂	α_0	α_1	α_2	α_3	α_4	α_5
		s in ATM Call volat	tility as a fu	nction of D	D_1 and D_2			
AT	TNBP_ATMC	TNBP_ATMP	0.004	-0.985	-0.010	-0.027	-0.035	-0.291
	CNBP_ATMC	CNBP_ATMP	0.004	-0.989	-0.011	-0.014	-0.037	-0.291
	PNBP_ATMC	PNBP_ATMP	0.004	-0.991	-0.010	-0.055	-0.051	-0.291
	NNBP ATMC	NNBP ATMP	0.004	-1.005	-0.011	-0.006	-0.078	-0.290
NON-AT	TNBP_ATMC	TNBP_ATMP	0.004	-1.190	-0.012	0.072	-0.038	-0.283
	CNBP ATMC	CNBP ATMP	0.004	-1.002	-0.013	0.098	0.010	-0.290
	PNBP_ATMC	PNBP_ATMP	0.004	-1.084	-0.011	0.044	-0.110	-0.287
	NNBP_ATMC	NNBP_ATMP	0.002	-1.148	-0.009	0.100	-0.037	-0.285
	Change	s in ATM Put volat	ility as a fu	nction of D	1 and D ₂			
AT	TNBP_ATMP	TNBP_ATMC	-0.012	-0.224	0.016	-0.054	-0.068	-0.327
	CNBP_ATMP	CNBP_ATMC	-0.012	-0.206	0.016	-0.088	-0.146	-0.326
	PNBP_ATMP	PNBP_ATMC	-0.012	-0.250	0.015	-0.060	-0.049	-0.328
	NNBP_ATMP	NNBP_ATMC	-0.012	-0.224	0.014	0.029	-0.130	-0.326
NON-AT	TNBP ATMP	TNBP ATMC	-0.012	0.036	0.015	0.078	-0.094	-0.325
	CNBP ATMP	CNBP ATMC	-0.012	-0.239	0.014	0.091	-0.062	-0.328
	PNBP ATMP	PNBP ATMC	-0.014	-0.098	0.017	0.077	-0.177	-0.327
	NNBP_ATMP	NNBP_ATMC	-0.011	-0.052	0.014	0.110	-0.096	-0.326

Impact of NBP of AT on the changes of OTM volatility

D ₁	D_2	α_{0}	α_1	α_2	α_3	α_4	α_5
	Changes in O	TM Call vol	atility as a f	unction of	D_1 and D_2		
TNBP_OTMC	TNBP_ATMC	0.001	-0.782	-0.007	-0.005	-0.008	-0.276
TNBP_OTMC	TNBP_ATMP	0.001	-0.789	-0.007	-0.007	-0.018	-0.275
CNBP_OTMC	CNBP_ATMC	0.001	-0.781	-0.007	-0.024	-0.014	-0.275
CNBP_OTMC	CNBP_ATMP	0.001	-0.784	-0.007	-0.025	-0.026	-0.275
PNBP_OTMC	PNBP_ATMC	0.001	-0.782	-0.007	-0.017	-0.016	-0.276
PNBP OTMC	PNBP ATMP	0.001	-0.787	-0.007	-0.013	-0.023	-0.275
NNBP_OTMC	NNBP_ATMC	0.001	-0.797	-0.007	0.091	0.010	-0.274
NNBP_OTMC	NNBP_ATMP	0.000	-0.799	-0.007	0.082	-0.034	-0.274
	Changes in O	TM Put vol	atility as a f	unction of I	D_1 and D_2		
TNBP_OTMP	TNBP_ATMC	-0.010	-0.279	0.013	-0.023	-0.021	-0.309
TNBP_OTMP	TNBP_ATMP	-0.010	-0.296	0.013	-0.021	-0.019	-0.310
CNBP OTMP	CNBP ATMC	-0.010	-0.263	0.014	-0.087	-0.088	-0.309
CNBP OTMP	CNBP ATMP	-0.010	-0.292	0.014	-0.096	-0.068	-0.310
PNBP OTMP	PNBP ATMC	-0.010	-0.288	0.013	-0.017	0.001	-0.310
PNBP_OTMP	PNBP_ATMP	-0.010	-0.292	0.013	-0.026	-0.022	-0.310
NNBP OTMP	NNBP ATMC	-0.009	-0.269	0.013	0.115	-0.052	-0.309
NNBP_OTMP	NNBP_ATMP	-0.009	-0.273	0.013	0.129	0.022	-0.309

Impact of NBP of non-AT on the changes of OTM volatility

D ₁	D_2	α_0	α_1	α_2	α_3	α_4	α_5
	Changes in OT	M Call vol	atility as a f	unction of L	D_1 and D_2		
TNBP_OTMC	TNBP_ATMC	0.001	-0.948	-0.006	0.091	0.036	-0.267
TNBP_OTMC	TNBP_ATMP	0.001	-0.924	-0.006	0.094	-0.029	-0.269
CNBP_OTMC	CNBP_ATMC	0.001	-0.799	-0.009	0.135	0.047	-0.275
CNBP_OTMC	CNBP_ATMP	0.001	-0.794	-0.008	0.135	0.015	-0.276
PNBP_OTMC	PNBP_ATMC	0.002	-0.828	-0.008	0.044	0.036	-0.273
PNBP OTMC	PNBP ATMP	0.001	-0.842	-0.006	0.033	-0.073	-0.273
NNBP_OTMC	NNBP_ATMC	-0.001	-0.910	-0.004	0.110	0.046	-0.269
NNBP_OTMC	NNBP_ATMP	-0.000	-0.880	-0.006	0.120	-0.026	-0.271
	Changes in O	TM Put vola	atility as a fu	unction of L	D_1 and D_2		
TNBP_OTMP	TNBP_ATMC	-0.010	-0.044	0.015	0.140	-0.052	-0.306
TNBP_OTMP	TNBP_ATMP	-0.010	-0.052	0.015	0.148	0.060	-0.306
CNBP OTMP	CNBP ATMC	-0.010	-0.277	0.012	0.126	-0.024	-0.310
CNBP_OTMP	CNBP_ATMP	-0.009	-0.272	0.010	0.135	0.105	-0.311
PNBP OTMP	PNBP ATMC	-0.010	-0.183	0.016	0.128	-0.080	-0.308
PNBP_OTMP	PNBP_ATMP	-0.008	-0.180	0.013	0.150	0.079	-0.308
NNBP_OTMP	NNBP_ATMC	-0.010	-0.115	0.014	0.164	-0.065	-0.307
NNBP_OTMP	NNBP_ATMP	-0.013	-0.154	0.018	0.165	0.051	-0.307

NBP of AT and nifty index returns

Category	Туре	α_0	α_1	α_2	α_3	α_4	α_5	α_6
					ng pressure			
ITM	TOT	0.051	-0.088	-0.116	1.363	0.005	-0.024	0.176
	С	0.002	-0.002	-0.005	0.044	0.003	-0.000	0.028
	Р	0.029	-0.021	-0.032	0.734	0.008	-0.018	0.190
	NCNP	0.005	-0.012	0.016	0.267	0.006	-0.006	0.156
ATM	TOT	0.027	-0.082	0.169	17.909	0.917	-0.077	0.191
	С	-0.006	0.006	0.020	0.666	0.015	-0.001	0.089
	Р	0.001	-0.045	0.136	0.651	-0.067	-0.020	0.244
	NCNP	0.003	-0.063	0.047	0.479	-0.008	-0.031	0.193
OTM	TOT	-0.099	0.434	0.752	9.898	0.641	0.000	0.148
	С	-0.009	-0.006	-0.073	0.328	0.011	-0.006	0.096
	Р	-0.023	0.075	0.005	1.207	0.040	-0.017	0.228
	NCNP	-0.001	0.013	0.040	0.209	0.008	0.001	0.100
	Relations	hip betweer	n put optior	n's net buyi	ng pressure	and index i	returns	
ITM	TOT	0.015	-0.023	-0.043	-2.890	-0.184	0.008	0.142
	С	0.000	0.000	-0.000	-0.000	0.000	-0.000	0.000
	Р	0.012	-0.027	-0.042	-0.583	-0.015	0.004	0.180
	NCNP	-0.000	-0.011	-0.024	-0.137	-0.005	0.000	0.114
ATM	TOT	0.036	0.298	0.483	-10.926	-0.666	0.108	0.194
	С	-0.007	-0.000	0.003	-0.034	0.013	0.004	0.120
	Р	0.016	-0.008	-0.183	-0.328	0.053	0.036	0.235
	NCNP	-0.004	0.059	-0.035	-0.404	0.019	0.019	0.203
OTM	TOT	-0.149	-0.158	-0.342	-9.017	-0.502	-0.042	0.167
	С	0.001	-0.028	0.002	-0.081	0.001	-0.016	0.123
	P	-0.085	-0.051	-0.018	-0.665	0.008	-0.002	0.271
	NCNP	-0.010	0.019	-0.010	-0.177	0.002	0.006	0.134

NBP of non-AT and nifty index returns

Category	Type	α_0	α_1	α_2	α_3	α_4	α_5	α_{6}
	Relations	hip betweer	n call option	n's net buyi	ng pressure	and index i	eturns	
ITM	TOT	-0.010	-0.163	-0.049	2.623	0.174	0.018	0.088
	С	0.003	-0.008	-0.016	0.054	0.007	0.002	0.078
	Р	-0.004	-0.003	-0.040	1.005	0.090	0.010	0.113
	NCNP	-0.017	-0.116	0.038	1.401	0.072	0.002	0.058
ATM	TOT	0.027	-0.082	0.169	17.909	0.917	-0.077	0.191
	С	0.005	0.031	0.065	0.378	0.009	0.023	0.131
	Р	-0.072	0.187	0.019	4.481	0.408	0.015	0.151
	NCNP	0.101	-0.143	0.453	8.846	0.497	-0.034	0.116
OTM	TOT	-0.099	0.434	0.752	9.898	0.641	0.000	0.148
	С	0.003	0.012	0.021	0.212	0.019	0.001	0.138
	Р	-0.085	0.286	0.255	2.537	0.186	0.010	0.163
	NCNP	0.031	-0.088	0.328	3.900	0.262	-0.003	0.122
	Relations	hip betweer	n put option	n's net buyi	ng pressure	and index r	eturns	
ITM	TOT	0.015	-0.023	-0.043	-2.890	-0.184	0.008	0.142
	С	0.001	0.001	-0.002	-0.028	-0.005	-0.000	0.026
	Р	0.003	-0.040	-0.058	-0.608	-0.061	-0.007	0.089
	NCNP	-0.007	0.098	0.023	-0.585	-0.018	-0.001	0.046
ATM	TOT	0.036	0.298	0.483	-10.926	-0.666	0.108	0.194
	С	0.001	-0.041	-0.070	-0.193	-0.006	-0.021	0.128
	Р	-0.022	-0.131	-0.052	-3.743	-0.360	0.021	0.144
	NCNP	0.054	0.532	0.560	-5.418	-0.339	0.009	0.130
OTM	TOT	-0.149	-0.158	-0.342	-9.017	-0.502	-0.042	0.167
	С	0.020	-0.022	-0.073	-0.192	-0.008	-0.008	0.167
	Р	-0.095	-0.207	-0.169	-2.917	-0.275	0.015	0.149
	NCNP	0.041	0.272	-0.059	-3.961	-0.184	0.012	0.132