The real cost of credit constraints: Evidence from micro-finance

Renuka Sane Susan Thomas Presented at the 8th CELS, Philadelphia

October 25, 2013

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The growing importance of micro-finance

- Pay-day lending and micro-finance have grown in popularity in the last 20 years.
 - Help ease liquidity constraints and enable consumption smoothing
- However, adverse effects of borrowing: over-borrowing, time-inconsistent preferences, financial distress.
 - Thaler, 1999; Lusardi and Tufano, 2009; SKiba and Tobacman, 2009; Armendariz and Morduch, 2010.
- Concerns exacerbated by alleged predatory lending practices and usurious interest rates.
- Policy questions on the usefulness of such credit. Restrict access in some cases.
- Evidence on interventions is mixed.
 - Morgan and Strain 2008; Zinman 2010; Melzer 2011.
- One drawback: use proxies for household welfare, and do not observe consumption.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The growing importance of micro-finance

- Pay-day lending and micro-finance have grown in popularity in the last 20 years.
 - Help ease liquidity constraints and enable consumption smoothing
- However, adverse effects of borrowing: over-borrowing, time-inconsistent preferences, financial distress.
 - Thaler, 1999; Lusardi and Tufano, 2009; SKiba and Tobacman, 2009; Armendariz and Morduch, 2010.
- Concerns exacerbated by alleged predatory lending practices and usurious interest rates.
- Policy questions on the usefulness of such credit. Restrict access in some cases.
- Evidence on interventions is mixed.
 - Morgan and Strain 2008; Zinman 2010; Melzer 2011.
- One drawback: use proxies for household welfare, and do not observe consumption.

This paper

- Policy intervention in Andhra Pradesh (AP) that forced a closure of the micro-finance industry
- Data from 'Consumer Pyramids', which releases average household characteristics of about 200 geographical regions across India
- Allows us to ask how micro-credit withdrawal affects consumption:
 - Is average household consumption affected when access to micro-finance is reduced?

(日) (日) (日) (日) (日) (日) (日)

- 2 Does the volatility of average consumption change?
- 3 Which households are more affected?
- Causal effect of the ban calculated as the difference-in-difference of the average household consumption between the treated regions (in AP) and the controls (matched regions outside AP).

What we find

- Average consumption expenditure of households in AP decreased by 19.5 percent.
- Volatility of average consumption expenditure after *increased* after the ban.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

There was a larger negative impact for households with liquidity constraints.

Part I

Research setting: Policy and data

The micro-finance ban in Andhra Pradesh

- One of the larger states in India, AP was the locus of growth of the Indian micro-finance industry, starting from the '80s.
- In 2010, there was an estimated 27 million customers of micro-finance in a population of 84 million.
- In December 2010, the state government passed a law that imposed operational constraints on the micro-finance institutions (MFIs).
- Micro-finance came to a standstill in AP; default probabilities went up to near 100%.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outside AP, micro-finance loan portfolios rose by 25 percent.

 An estimated credit shortfall of about Rs.30 billion to households (Srinivasan, 2012).

The micro-finance ban in Andhra Pradesh

- One of the larger states in India, AP was the locus of growth of the Indian micro-finance industry, starting from the '80s.
- In 2010, there was an estimated 27 million customers of micro-finance in a population of 84 million.
- In December 2010, the state government passed a law that imposed operational constraints on the micro-finance institutions (MFIs).
- Micro-finance came to a standstill in AP; default probabilities went up to near 100%.

(日) (日) (日) (日) (日) (日) (日)

Outside AP, micro-finance loan portfolios rose by 25 percent.

 An estimated credit shortfall of about Rs.30 billion to households (Srinivasan, 2012).

Database: Consumer Pyramids

- Household panel survey, run every quarter.
- 150,000 households included in the survey.
- Geographical breakup at the level of multiple regions within the Indian states called Homogenous Regions (HR).
- Data released as average for households in an HR.
- Additional available data used in this study:
 - Averages by income categories (I-1, highest income, to I-9, lowest income)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Identification of HRs as rural and urban.
- 14 HRs with ~ 13,000 households in AP. 82% of AP households borrow.

Part II

Research design

Approach

- Step 1: Calculate the average household consumption in AP before the ban, and compare it with the average household consumption after the ban.
- Step 2: Identify regions in India which are similar to the AP HRs, but where the ban was not in effect.
- Step 3: Compare the change in the average AP household consumption before and after the ban to the change in the average household consumption of these matched HRs in the same period.
- If there is a significant difference between the change in AP consumption and the change in the consumption of the matched regions, we attribute it to the ban.
- Step 4: Worry about threats to validity. Did something else cause the change in the average consumption in AP?

Matching methodology

- Match on income and socio-economic factors:
 - 1 Average household income.
 - 2 Number of households.
 - 3 Working population (The proportion of the HR that is between 20 and 60 years).
 - **4** The proportion with graduates past the 10th grade.
 - 5 The proportion that is financially excluded (the fraction of households with a bank account / credit card / life insurance policy / other similar formal financial products).
 - 6 The proportion of farmers in the region.
- Exclude the HRs in the states of South India Tamil Nadu, Kerala and Karnataka – which might have suffered from spillovers of the ban
- Mahalonobis distance measure for nearest neighbour matching

$$D_{ij} = \left[(X_i - X_j)' \Sigma^{-1} (X_i - X_j) \right]^{\frac{1}{2}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Matching methodology

- Match on income and socio-economic factors:
 - 1 Average household income.
 - 2 Number of households.
 - 3 Working population (The proportion of the HR that is between 20 and 60 years).
 - 4 The proportion with graduates past the 10th grade.
 - 5 The proportion that is financially excluded (the fraction of households with a bank account / credit card / life insurance policy / other similar formal financial products).
 - 6 The proportion of farmers in the region.
- Exclude the HRs in the states of South India Tamil Nadu, Kerala and Karnataka – which might have suffered from spillovers of the ban
- Mahalonobis distance measure for nearest neighbour matching

$$D_{ij} = \left[(X_i - X_j)' \Sigma^{-1} (X_i - X_j) \right]^{\frac{1}{2}}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

QQ plots for match balance

The difference-in-difference (DID) estimator

$$C_{i,t} = \beta_0 + \beta_1 AP_{i,t} + \beta_2 POST-CRISIS_{i,t} + \beta_3 (AP_{i,t} \times POST-CRISIS_{i,t}) + \epsilon_{i,t}$$

- AP is a dummy which takes value "1" if *i* is a region in AP (the treatment region) and "0" otherwise (the control region)
- The PRE-CRISIS quarters include the four quarters of March, June, September and December 2010.
- POST-CRISIS includes the four quarters of March, June, September and December 2011

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Coefficient of interest: β_3 .

Part III

Results

Average consumption

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

DID results: Average consumption

	$\hat{\beta}_3$	std.err.	p.val	Adj.p	Qpower
Total	-3375.1	1450.5	0.02	0.05**	6000
Food	-1302.6	419.1	0.00	0.01***	2000
Fuel	-504.8	199.3	0.01	0.05**	1000
Education	-350.3	151.8	0.02	0.05**	500
Cosmetics	-165.1	68.3	0.02	0.05**	300
Miscellaneous	-341.5	733.3	0.64	0.80	2000
Communication	12.3	98.3	0.90	0.91	500
Clothing	-431.4	126.9	0.00	0.01***	500
Transport	-25.9	44.6	0.56	0.80	400
Intoxicants	-222.7	49.1	0.00	0.00***	200
Rent	-14.2	127.2	0.91	0.91	300
EMIs	31.5	63.9	0.62	0.80	500
Restaurant	-82.3	71.1	0.25	0.46	400
Health	17.8	58.6	0.76	0.88	200
Recreation	-24.6	24.7	0.32	0.53	100

*** indicates 1% and ** indicates 5%

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Summarising results

- Average consumption of all households in AP decreased after the ban.
- Volatility of consumption in AP *increased* after the ban.
- Liquidity constraints matter?
 - *Poorer* households and households in *rural regions* (with lower access to alternative finance) saw a *larger drop* in consumption.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Part IV

Threats to validity

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Threats to validity

- Events other than the ban caused the results.
- The results are sensitive to the matching strategy.
- The quality of matches is poor because South India, where other states are as indebted as AP, was excluded from the control pool.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Did events other than the ban cause the results?

Impact of the ban by micro-finance exposure

Micro-finance exposure of the HR (%)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 - つへぐ

Did a drop in income cause the results

 $Inc_{i,t} = \beta_0 + \beta_1 AP_{i,t} + \beta_2 POST-CRISIS_{i,t} + \beta_3 (AP_{i,t} \times POST-CRISIS_{i,t}) + \epsilon_{i,t}$

\hat{eta}_{3}	std.err	p.val	adj.p
-2119.82	2456.23	0.39	0.61

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Sensitivity to matching strategy

- Dropping one covariate at a time.
- Genetic matching algorithm.
- Adding the proportion of women.
- Adding South Indian states in the list of available controls.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The results do not change.

Sensitivity to matching strategy

- Dropping one covariate at a time.
- Genetic matching algorithm.
- Adding the proportion of women.
- Adding South Indian states in the list of available controls.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The results do not change.

Part V

Conclusion

Summary of the results

Results suggest a fairly large negative impact of the ban on micro-finance.

 Consumption dropped by 19.5 percent over the first four quarters after the micro-finance ban.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Impact visible across all income classes – including those which use little micro-credit themselves.

Suggests general equilibrium effects.

The effect is observed on both the level as well as the volatility of consumption.

Future research

- Drawback of the analysis is that we do not observe individual household level records.
- Such record level data may reveal that welfare is improved without micro-finance, for *certain* households.
- With the release of record level data, these effects could be measured.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Thank you http://www.ifrogs.org

