Liquidity considerations in estimating implied volatility

Rohini Grover Susan Thomas IGIDR Finance Research Group

Presentation at the 24th Australasian Finance & Banking Conference

16 December, 2011

Do we need a new implied volatility estimation methodology?

- The first method: ATM options, equally weighted. (CBOE VXO)
- New method: ATM+OTM options, weights are free of a specific option pricing model. (CBOE VIX)
- Why search for a new method?

Liquidity matters

- Financial markets deliver good prices when liquidity is robust.
- Recently, there have been instances of market liquidity freezing up (eg. 6th May Flash Crash; Sep 2008, Global Financial crisis).
- Market prices are particularly crucial then; but they have to be adjusted for vanishing liquidity.
- Even more constant, cross-sectional variation in liquidity for futures and options is high.
- This is a global phenomenon, not one restricted to emerging economies

An approach adjusting for cross-sectional liquidity

- Use all options that gives a current market price.
- Near-month and next-month maturities.
- Weight the IVs computed using two liquidity measures
 - Simple inverse of percentage spread.
 - The liquidity adjusted VIX, SVIX is estimated as :

$$\sigma_{tj} = \frac{\sum_{i} W_{it,j} \sigma_{it}}{\sum_{i} W_{it,j}}$$

$$W_{it,j} = \frac{1}{s_{it,j}}$$

 Where, s_{it,j} is the spread of the jth option at time t, and i is the maturity of the option, varying between near and next-month.

- Traded volume of options
 - The volume adjusted VIX, TVVIX is estimated as :

$$\sigma_{tj} = \frac{\sum_{i} \mathbf{w}_{it,j} \sigma_{it}}{\sum_{i} \mathbf{w}_{it,j}}$$

- where $w_{it,j}/\sum_{i} w_{it,j}$ refers to the fraction of volume traded for option i at the end of day t, and j = 1, 2 stands for the two nearest
- The weights incorporate cross-sectional variation in liquidity, automatically adjusts the lower weights for illiquid options.

Performance evaluation

- Candidates competing with SVIX and TVVIX:
 - VXO.
 - Vega-weighted VIX (VVIX),
 - Selasticity-of-volatility-weighted VIX (EVIX)
- Benchmark: Realised volatility (RV) using intra-day returns at ten-minute intervals, scaled up to a daily volatility measure.

Performance evaluations

- Evaluations based on:
 - Forecasting regressions (Christensen and Prabhala, 1998)
 - MCS methodology (Hansen et al, 2003)
- Forecasting regressions:
 - LHS: RV
 - RHS: Volatility candidates
- MCS: Volatility candidates against each other.

Forecasting regression results

Volatility Indexes	a ₀	a ₁	Adj.R ²	χ^2	DW
VXO	-0.14	0.59	0.59	67.7	1.68
	(0.09)	(0.00)		(0.00)	
VVIX	-0.01	0.64	0.57	21.3	1.59
	(0.94)	(0.00)		(0.00)	
EVIX	-0.16	0.62	0.51	28.4	1.37
	(0.19)	(0.00)		(0.00)	
TVVIX	-0.19	0.81	0.59	6.7	1.64
	(0.03)	(0.00)		(0.01)	
SVIX	0.03	0.70	0.57	31.4	1.72
	(0.55)	(0.00)		(0.00)	

MCS results

		MSE					
VIX	p_{T_r}	$MCS(p_{T_r})$	$p_{T_{SQ}}$	$MCS(p_{T_{SO}})$			
VXO	0.007	0.007	0.000	0.000			
EVIX	0.004	0.007	0.000	0.000			
VVIX	0.078	0.078	0.033	0.033			
TVVIX	0.991	0.991	0.916	0.916			
SVIX	-	1.000	-	1.000			
MAD							
VIX	p_{T_r}	$MCS(p_{T_r})$	$p_{T_{SQ}}$	$MCS(p_{T_{SQ}})$			
VXO	0.000	0.000	0.000	0.000			
EVIX	0.000	0.000	0.000	0.000			
VVIX	0.000	0.000	0.000	0.000			
TVVIX	0.002	0.002	0.002	0.002			
SVIX	-	1.000	-	1.000			
QLIKE							
VIX	p_{T_r}	$MCS(p_{T_r})$	$p_{T_{SQ}}$	$MCS(p_{T_{SQ}})$			
VXO	0.000	0.000	0.000	0.000			
EVIX	0.000	0.000	0.000	0.000			
VVIX	0.000	0.000	0.000	0.00			
TVVIX	0.000	0.000	0.000	0.00			
SVIX	-	1.000	-	1.000			

Conclusion

- The regression results indicate that all volatility indexes are biased estimates of future volatility
- The volatility indexes cannot be compared by using R² from the estimated regressions
- Thus MCS is used to compare the performance of VIXs
- The following is inferred under the various loss functions used in the MCS methodology:
 - SVIX and TVVIX are the two best performing models under MSE loss function
 - However under both QLIKE and MAD, SVIX outperforms all other volatility indexes
- Thus, the SVIX can be taken as an improvement, with
 - relatively good performance, and
 - the advantage of being easier to implement compared to other existing methods that restrict the set of options used to calculate the VIX value while accounting for illiquidity.

