Liquidity considerations in estimating implied volatility

Rohini Grover Susan Thomas

Presentation at the $7^{\text {th }}$ conference of
Asia-Pacific Association of Derivatives

26 August, 2011

Do we need a new implied volatility estimation methodology?

- The first method: ATM options, equally weighted. (CBOE VXO)
- New method: ATM+OTM options, weights are free of a specific option pricing model. (CBOE VIX)
- Why search for a new method?

Liquidity matters

- Financial markets deliver good prices when liquidity is robust.
- Recently, there have been instances of market liquidity freezing up (eg. $6^{\text {th }}$ May Flash Crash; Sep 2008, Global Financial crisis).
- Market prices are particularly crucial then; but they have to be adjusted for vanishing liquidity.
- Even more constant, cross-sectional variation in liquid for futures and options is high.
- This is a global phenomenon, not one restricted to emerging economies

NIFTY Put options for September 2008

NIFTY Call options for September 2008

An approach adjusting for cross-sectional liquidity

- Use all options that gives a current market price.
- Near-month and next-month maturities.
- Weight is a simple inverse of percentage spread.
- The liquidity adjusted VIX, SVIX is estimated as :

$$
\begin{aligned}
\sigma_{t j} & =\frac{\sum_{i} w_{i t, j} \sigma_{i t}}{\sum_{i} w_{i t, j}} \\
w_{i t, j} & =\frac{1}{s_{i t, j}}
\end{aligned}
$$

- Where, $s_{i t, j}$ is the spread of the $j^{\text {th }}$ option at time t, and i is the maturity of the option, varying between near and next-month.
- This weight incorporates cross-sectional variation in liquidity, automatically adjusts the lower weights for illiquid options.

Performance evaluation

- Candidates competiting with sVIx:
(1) VXO ,
(2) Vega-weighted VIX (VVIX),
(3) Elasticity-of-volatility-weighted VIX (EVIX)
- Benchmark: Realised volatility (RV) using intra-day returns at one-minute intervals, scaled up to a daily volatility measure.

Performance evaluations

- Evaluations based on:
(1) Forecasting regressions (Christensen and Prabhala, 1998)
(2) MCS methodology (Hansen et al, 2003)
- Forecasting regressions:
- LHS: log of the volatility candidate
- RHS: RV
- MCS: \log of the volatility candidates against each other.

Forecasting regression results

Volatility Indexes	a_{0}	a_{1}	Adj. R^{2}	χ^{2}	DW
LVXO	-0.83	1.17	0.62	731.1	1.38
	(0.00)	(0.00)		(0.00)	
LVVIX	-0.50	1.01	0.57	249.1	1.23
	(0.00)	(0.00)		(0.00)	
LEVIX	-0.69	1.05	0.43	269.0	0.99
	(0.00)	(0.00)		(0.00)	
LSVIX	-0.33	0.95	0.59	153.5	1.39
	(0.00)	(0.00)		(0.00)	

VIX	MSE	$\mathrm{p}_{T_{r}}$	MCS $\left(\mathrm{p}_{T_{r}}\right)$	$\mathrm{p}_{T_{S Q}}$	MCS $\left(\mathrm{p}_{T_{S Q}}\right)$
LVXO	0.392	0.019	0.019	0.000	0.000
LEVIX	0.304	0.011	0.019	0.000	0.000
LVVIX	0.201	0.006	0.019	0.006	0.006
LSVIX	$\mathbf{0 . 1 1 2}$	-	$\mathbf{1 . 0 0 0}$	-	$\mathbf{1 . 0 0 0}$

Conclusion

- The liquidity adjusted VIX, SVIX, shows the
(1) Smallest bias vis-a-vis the RV,
(2) The second best R^{2} value in the forecasting regression, and
(3) The best performance in the MCS tests.
- The vega-weighted VVIx has the second best MCS performance, but has the lowest R^{2} in the forecasting regression.
- The vxo has the largest bias and the worst MCS performance, but shows the best R^{2} fit.
- Thus, the SVIX can be taken as an improvement, with
- relatively good performance, and
- the advantage of being easier to implement compared to other existing methods that restrict the set of options used to calculate the VIX value while accounting for illiquidity.

