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• Extreme value theory deals with the asymptotic behaviour of the extreme
observations (maximum or minimum) of n realisations of a random vari-
able.

• Financial risk management is all about understanding the large movements
in the values of asset portfolios.
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Extreme value Theory

X ∈ (l, u) is a random variable.
f → the density of X .
F → the distribution function of X .
X1, X2, ....Xn are n independent realisations of X ,

and

Yn = max{X1, X2, ....., Xn}
Zn = min{X1, X2, ...., Xn}

EVT is the theory of the asymptotic behaviour of Yn and Zn as n becomes
large.
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The exact distribution of extremes is degenerate in the limit

Assuming X1, X2, ..., Xn to be iid, the distribution function of Yn, denoted
by P (.) is given by

P (y) = Pr{Yn ≤ y}
= Pr{max(X1, X2, ...Xn) ≤ y}
= Pr{X1 ≤ y, X2 ≤ y, ..., Xn ≤ y}
= [F (y)]n

Similarly, the distribution function of Zn, denoted by K(.) is given by

K(y) = 1− [1− F (y)]n

as y → l, both P (y) and K(y) tend to zero, and as y → u, both G(y) and
K(y) tend to unity.
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In EVT, distribution of suitably normalised extrema is studied.

Yn and Zn are transformed with a scale parameter bn(> 0) and a location
parameter an ∈ R, such that the distribution of the standerdised exrema

Y
′
n =

Yn − an

bn
and Z

′
n =

Zn − an

bn

is non-degenerate.

The two extremes, the maximum and the minimum are related by the
following relation:

min{X1, X2, ..., Xn} = −max{−X1,−X2, ...,−Xn}

Therefore, all the results for the distribution of maxima leads to an analo-
gous result for the distribution of minima and vice versa.
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Two important theorems

1. The Fisher-Tippett theorem (1928)

2. The Pickands-Balkema-de Haan theorem (1974)

Two important distributions

1. The Generalised extreme value distribution (GEVD)

2. The Generalised Pareto distribution (GPD)
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The Fisher-Tippett Theorem [Extremal Types Theorem] (1928)

If ∃ constants bn(> 0) and an ∈ R such that

Yn − an

bn

d−→ H as n →∞

for some non-degenerate distribution H , then H must be one of the only
three possible ‘extreme value distributions’.

In that case, X ∈ DA(H).

(Similar to CLT for averages!)
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The Standard Extreme Value Distributions

Type I or Gumbel Class (thin-tailed):∧
(x) = {exp(−exp−x)} (1)

Type II or Fréchet Class (fat-tailed):

Φα(x) =

 0 ; x ≤ 0

exp(−x−α); x > 0, α > 0
(2)

Type III or Weibull Class (no tail):

Ψα(x) =

exp(−(−x)α) ; x ≤ 0, α > 0

1; x > 0
(3)
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Densities of the Extreme Value Distributions

Frechet
Weibull
Gumbel

For the Fŕechet and the Weibull distributions,α = 1 is chosen.
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For the Fŕechet and the Weibull distributions,α = 1 is chosen.
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• Normal, Exponential, lognormal (and other monotone transformation
of the normal distribution) ∈ DA(Gumbel)

• Pareto, Cauchy, students-t, fat-tailed distributions ∈ DA(Fréchet)

• Uniform, beta ∈ DA(Weibull)

• Poisson, Geometric /∈ any domain of attraction
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Convergence of the normalised maxima of normal variables to Gumbel distribution

Gumbel distribution
n=5

n=10
n=20

If Yn is the maximum ofn iid standard normal variables, then the distribution
of Un = Yn−an

bn
converges to the Gumbel distribution, asn increases, where

an =
√

2 lnn− ln 4π+ln lnn
2(2 lnn)1/2

bn = (2 lnn)−1/2
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Convergence of normalised maxima of iid Pareto variables to Frechet distribution

Frechet distribution
n=5

n=10
n=20

If Yn is the maximum ofn iid Pareto variables with distribution function
F (x) = 1−Kx−a; wherea > 0 , K > 0 , x ≥ K1/a , then the distribution

of Un = Yn−an
bn

converges to the Fréchet distribution, asn increases, where

an = 0 andbn = (Kn)1/a

HereK = 2, a = 1.5 for the Pareto distribution andα = 1 for the Fŕechet
distribution are assumed.
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Convergence of the normalised maxima of Uniform variables to Weibull distribution

Weibull distribution
n=5

n=10
n=20

If Yn is the maximum ofn iid uniform variables, then the distribution of
Un = Yn−an

bn
converges to the Weibull distribution, asn increases, where

an = 1
bn = n−1
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The Generalised Extreme Value Distribution

The three families of extreme value distributions can be nested into a single
parametric representation (Jeskinson and Von Mises)

Hξ(x) = exp{−(1 + ξx)−
1
ξ (4)

where
1 + ξx > 0

x > −1

ξ
if ξ > 0

x <
1

ξ
if ξ < 0

x ∈ R if ξ = 0

The parameter ξ, called the tail index, models the distribution tails.

• ξ > 0 → Fréchet distribution

• ξ < 0 → Weibull distribution

• ξ = 0 → the Gumbel distribution.
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Extremal Types theorem for stationary time series (Leadbetter et al.
1983)

Suppose that X̃1, X̃2, ...X̃n be a stationary time series with a marginal (uncon-
ditional) distribution function F . Also, let Ỹn = max(X̃1, X̃2, ...X̃n).

Denote by X1, X2, ..., Xn as associated iid series with the same marginal dis-
tribution F and let Yn = max(X1, X2, ..., Xn). Then,

lim
n→∞

Pr{(Yn − an)/bn ≤ x} = H(x),

for a non-degenerate H(x) if and only if

lim
n→∞

Pr{(Ỹn − an)/bn ≤ x} = Hθ(x),

where Hθ(x) is also non-degenerate, and 0 ≤ θ ≤ 1 is known as the “extremal
index” of the stationary process.
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Extremal index

• The extremal index models the relationship between the dependence struc-
ture and the extremal behaviour of a stationary process. It can be interpreted
as the reciprocal of the mean cluster size.

• θ = 1 for independent processes. The stronger the dependence, the lower
the value of θ.

• Various methods of estimating θ are elaborated in text books on EVT (Chap
8, Embrechts et al.).
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Pickands-Balkema-de Haan Theorem (1974)

Suppose that X1, X2, ....Xn are n independent realisations of a random vari-
able X with a distribution function F (x). Let x0 be the finite or infinite right
endpoint of the distribution F . The distribution function of the excesses over
certain high threshold u by

Φu(x) = Pr{X − u ≤ x|X > u} =
F (x + u)− F (u)

1− F (u)

for 0 ≤ x < x0 − u.

If F ∈ DA(Hξ) then ∃ a positive measurable function σ(u) such that

lim
u→x0

sup
0≤x<x0−u

|Φu(x)−Gξ,σ(u)(x)| = 0

and vice versa, where Gξ,σ(u)(x) denote the Generalised Pareto distribution.
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The Generalised Pareto Distribution (GPD)

Gξ,σ(x) =

1− (1 + ξx/σ)−1/ξ ifξ 6= 0

1− exp(−x/σ) ifξ = 0
(5)

where σ > 0, and the support of x is x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤ −σ/ξ
when ξ < 0.

• ξ > 0 → Gξ,σ is a reparameterised version of the ordinary Pareto distribu-
tion.

• ξ = 0 → Gξ,σ is exponential

• ξ < 0 → Gξ,σ is Pareto type II distribution
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EVT provides a robust framework for measuring financial risk

• EVT does not require a priori assumption about the return distribution
while the conventional parametric approaches need the assumption of
normal distribution.

• EVT based methods inherently incorporate separate estimation of both the
tails, thereby allowing for modelling possible asymmetry.
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Two broad categories of EVT models

1. The Block Maxima (BM) model (A GEV approach)
Models for the largest (smallest) observations collected from non-

overlapping blocks (samples) of size n from the data.

• Estimation of stress loss (McNeil 1999)
• Estimation of VaR (Longin 2000)

2. The Peaks-Over-Threshold (POT) model (A GPD approach)
Models for large observations exceeding certain threshold.

• Estimation of VaR (Danielsson and de Vries 1997; McNeil and Frey 1999)
• Estimation of Expected shortfall (McNeil and Frey 1999; Longin 2000)
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The BM approach

Estimation of Stress Loss (McNeil 1999)

•X1, X2, ..XT are daily (negative) logarithmic returns.
• Divide the data into k non-overlapping blocks of same size n.
•Y j

n = min{(Xj
1 , X

j
2 , ..., X

j
n}, the minimum of the n observations in the

block j.
• Use MLE to fit the GEVD Hξ to the block minima Y 1

n , Y 2
n , ...Y k

n .
• The pthquantile of the fitted distribution is known as the pth “stress loss”.

For example, if n = 25 (a month), then H−1
ξ̂

(0.05) gives the magnitude of the
daily loss level which can be expected to reach once in 20 months.
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Estimation of VaR (Longin 2000)

• Use MLE to estimate the parameters an, bn and ξ of the asymptotic distribu-
tion of the minimal returns. A Goodness-of-fit test can be carried out to test for
the statistical validity of the estimates.

• If the data is non-iid and stationary (which is generally the case) then the ex-
tremal index θ needs to be estimated as well.

• If p∗ is the probability of the minimal daily returns (over n days) exceeding
certain threshold and p the corresponding probability for the underlying returns,
then,

p∗ = Pr{min(X1, X2, ...Xn) ≤ z}
= Pr{X1 ≤ z, X2 ≤ z, ..., Xn ≤ z}
= pn (6)

• In case of non-iid stationary series, (6) takes the form

p∗ = (pn)θ
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Estimation of VaR (contd.)

• The VaR formula, expressed in terms of the the distribution of the minimal
returns, can be obtained as

p∗ = 1−H(V aR)

= exp

[
−

(
1 + ξ

(
V aR− bn

an

))1/ξ
]

leading to

V aR = −bn +
an

ξ

[
1− (− ln(p∗))

ξ
]
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The POT approach

The tail of the return distribution over certain threshold is estimated. Two dif-
ferent approaches exist.

• The semi-parametric models based on the Hill estimator and its relatives
(Danielsson and de Vries 1997).

• Fully parametric models based on the Generalised Pareto Distribution
(McNeil and Frey 1999).

• The Hill estimator based method is applicable only for fat-tailed distribu-
tions.

• The GPD version provides simple parameteric formulae for measuring ex-
treme risk which can be supplemented with estimates of standard error using
MLE.
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The GPD approach

Using the Pickands-Balkema-de Haan theorem and the GPD approximation for
the distribution of the excesses over a threshold u, we get

F (x) = (1− F (u))Gξ,σ(x− u) + F (u)

which gives the tail estimator

F̂ (x) = 1− Nu

N

(
1 + ξ̂

x− u

σ̂

)−1/ξ

For a given probability p > F (u), the VaR is estimated by inverting the tail
estimation formula

V̂ aRp = u + σ̂/ξ̂
(
(N/Nu(1− p))

−ξ − 1
)
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Expected shortfall

ESp = V aRp + E [X − V aRp|X > V aRp]

A nice stability property of the excess distribution above threshold u is that if
a higher threshold is taken then the distribution of the excess above the higher
threshold is also GPD with the same shape parameter but a different scale pa-
rameter.

FV aRp
(y) = Gξ,σ+ξ(V aRp−u)(y)
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Dynamic VaR (McNeil 1999; McNeil and Frey 1999)

Let {Xt} is a strictly stationary time series whose dynamics are given by

Xt = µt + σtZt (7)

where µt is the mean process and σt the volatility dynamics of Xt, and,

Zt ∼ fZ(z)

where fZ(z) is white noise.

The pth quantile of the distribution of Xt at time t can be obtained by using that
of Zt, as,

xt
p = µt + σtzp (8)

where zp is the pth quantile on the distribution of Zt, which, by assumption, is
iid.
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Dynamic VaR and ES (contd.)

1. Fit a time series model to the return series without making any assumption
about fZ(z) and using a pseudo-maximum likelihood (PML) approach. Es-
timate µt and σt from the fitted model and extract the residuals Zts.

2. Consider the residuals to be the realisations of a strict white noise process
and use extreme value theory (EVT) to model the tail of FZ(z). Use this
EVT model to estimate zp.

3. V aRt
p and ESt

p for the observed returns are

V aRt
p = µt + σtV aR(z)p

ESt
p = µt + σtES(z)p

PML

Gourieroux et al. (1984) establish that a distribution belonging to linear and
quadratic exponential family (eg. the normal distribution) can generate con-
sistent and asymptotically normally distributed estimators for the first two mo-
ments of the true distribution, regardless of the exact form of the true underlying
distribution.
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A POT analysis of the Nifty returns: An illustra-
tion(Apologies for showing you an old work)

• Nifty data:

Estimation window: 3 July 1990 – 7 May 1996 (1250 daily observations)

Forecast period: 8 May 1996 – 15 March 2002 (1446 daily forecasts).

• Time series model: An AR(1)-GARCH(1,1) model.

• Estimation of 95% and 99% VaR for a long and a short position in Nifty
portfolio.
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Estimation of AR(1)-GARCH(1,1) model

Parameter Estimates SE Confidence bounds

The mean equation:
Constant -0.036 0.040 (-0.114, 0.043)
AR(1) 0.225 0.029 (0.167,0.282)

The variance equation:
Constant 0.039 0.015 (0.010, 0.067)
ARCH(1) 0.101 0.016 (0.069, 0.132)
GARCH(1,1) 0.803 0.015 (0.863, 0.923)
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Descriptive statistics: Returns and standardised residuals

Mean Variance Skewness Kurtosis

Returns 0.1094 4.1675 0.0758 8.6126
SR 0.0268 1.0033 0.2223 4.3623
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Tests for skewness, kurtosis and auto correlation
statistic p-value

Panel A: The returns series (rt)
skewness 15.7839 0.000
kurtosis 292.3220 0.000
H.C. Ljung-Box 57.2202 0.01

Panel B: The residual series (zt)
skewness 46.2049 0.000
kurtosis 70.78355 0.000
H.C. Ljung-Box 47.7039 0.074
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Correlograms of the returns and the standard residuals
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Correlograms of the squared returns and the squared standard residuals
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Modeling Peaks-over-threshold

• How to choose the threshold?

• Mean-excess plot (McNeil and Frey 1999; McNeil 1996).

• Arbitrary threshold level (Gavin 2000).

• 1.65 ×σ (Neftci 2000).
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Maximum likelihood estimates of the GPD parameters

Nu u Fu ξ̂ σ̂

left tail 50 -1.6493 0.9599 0.2027 0.4099
(0.2095) (0.1030)

Right tail 66 1.6494 0.9471 -0.0064 0.6460
(0.2736) (0.1950)

Figures in parenthesis indicate standard error
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Quantiles on the lower tail of the i.i.d. residuals

p EVT Empirical Normal

0.06 -1.4907 -1.4164 -1.5548
0.05 -1.5608 -1.5092 -1.6449
0.04 -1.6503 -1.6358 -1.7507
0.03 -1.7717 -1.7618 -1.8808
0.02 -1.9555 -1.8128 -2.0537
0.01 -2.3067 -2.3615 -2.3263
0.009 -2.3646 -2.3704 -2.3656
0.008 -2.4307 -2.4348 -2.4082
0.007 -2.5076 -2.4637 -2.4573
0.006 -2.5991 -2.7965 -2.5121
0.005 -2.7109 -2.9345 -2.5758
0.004 -2.8526 -3.0110 -2.6521
0.003 -3.0474 -3.0858 -2.7478
0.002 -3.3404 -3.2280 -2.8782
0.001 -3.8005 -3.4330 -3.0902
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Quantiles on the upper tail of the i.i.d. residuals

p EVT Empirical Normal

0.94 1.5684 1.5550 1.5548
0.95 1.6862 1.6728 1.6449
0.96 1.8302 1.8310 1.7507
0.97 2.0155 2.0034 1.8808
0.98 2.2761 2.1447 2.0537
0.99 2.7202 2.8785 2.3263
0.991 2.7875 2.8839 2.3656
0.992 2.8627 2.9422 2.4082
0.993 2.9479 3.2272 2.4373
0.994 3.0461 3.2469 2.5121
0.995 3.1622 3.2476 2.5758
0.996 3.3041 3.5057 2.6521
0.997 3.4867 3.5153 2.7478
0.998 3.7436 3.6180 2.8782
0.999 3.8535 3.6394 3.0902
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Lower tail of the Nifty innovations
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Upper tail of the Nifty innovations
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Testing the discrepancy between estimated and empirical tail quantiles

F (x), G(x) and φ(x) denote the empirical, the estimated and the normal dis-
tribution functions.
Test 1:

H0 : F (x) = G(x)

against the alternative hypothesis

H1 : F (x) 6= G(x)

Two-sided Kolmogorov-Smirnov test to test this hypothesis.

Test 2:

H
′

0 : F (x) = φ(x)

and the alternative hypothesis is

H
′

1 : F (x) > φ(x)

A one-sided Kolmogorov-Smirnov test for this.
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Results of the Kolmogorov-Smirnov tests of discrepancy

Upper tail Lower tail

D 0.2794 0.1574
D+ 0.8536∗ 0.3589
Critical value of D at 0.05 level of significance = 0.467

Critical value of D+ at 0.05 level of significance = 0.400
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95% and 99% VaR measures estimated with the POT model
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Statistical precision of the VaR measures

• A “good” VaR model should generate the pre-specified failure probability
p, conditionally at each point of time (conditional efficiency) [Christoffersen,
1998].

• Given rt and the ex-ante VaR forecasts, the following indicator variable may
be defined

It =

1 if rt < vt

0 otherwise

• The VaR forecasts are said to be efficient if they display “correct conditional
coverage”, i.e., if

E
[
It|t−1

]
= p ∀ t

• This is equivalent to saying that the {It} series is iid with mean p.
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Tests for correct conditional coverage

1. Christoffersen’s test (1998)

2. Regression-based tests (Christoffersen and Diebold 2000; Clements and
Taylor 2000)
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The regression test

Define the regression

It = α0 +

S∑
s=1

αsIt−s +

S−1∑
s=1

µsDs,t + εt

t = S + 1, S + 2, ..., T

Ds,t are explanatory variables.

Conditional efficiency of the It process can be tested by testing the joint hy-
pothesis:

H : Φ = 0, α0 = p (9)

where

Φ = [α1, ...αS, µ1, ..., µS]′

•The hypothesis (9) can be tested by using an F-statistic in the usual OLS
framework.
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Results of the test of “conditional coverage” for the POT VaR

p̂ (p-value) F-stat (p-value)

Panel A: 95% VaR estimation

Short Nifty 0.0500 (0.4990) 1.0633 (0.3878)
Long Nifty 0.0452 (0.6778) 0.6155 (0.8016)

99% VaR estimation

Short Nifty 0.0056 (0.8359) 0.7701 (0.6579)
Long Nifty 0.0087 (0.6397) 0.29651 (0.98208)
Figures in parentheses indicate p-values
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Summary

• The innovation distribution of Nifty returns is asymmetric.

• There is significant “tail–thickness” on the right tail of the Nifty innovations
while the left tail behaves like the left tail of the standard normal distribu-
tion.

• The VaR forecasts generated by the POT approach displays the property of
“correct conditional coverage”.
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Thank you




