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Abstract  
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human traders provide liquidity in electronic order-matching markets, and the consequent 
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the extent to which they post new liquidity-supplying limit orders; and significantly reduce 
the aggressiveness of these limit orders, effectively increasing the price at which they are 
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associated with the disappearance of the speed-based information advantages of algorithmic 
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liquidity provision in related stocks, potentially making markets more “fragile”. Our results 
suggest that, in contrast to manual traders who adapt in (higher latency) real time, algorithmic 
trade execution appears less conducive to low impact adjustment of complex information 
asymmetries or flows. Overall, our results reinforce regulatory concerns about the potential 
for systemic fragility in this context. 
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Man vs. Machine: 
Liquidity Provision and Market Fragility 

 
1. Background and Motivation 

Equity markets are now largely organized as electronic order matching markets and 

their liquidity arises from the standing buy and sell limit orders posted, entirely voluntarily, 

by traders with no formal affirmative obligations to maintain liquid and orderly markets.1 

Traders supply liquidity (to earn, rather than pay, the bid-offer spread) only when it is 

optimal for them to do so as part of their trading activities. In the context of such markets, an 

important area of concern for exchanges, regulators, and market participants is the consistent 

and continual availability of limit orders to execute against – in good times and bad – so that 

liquidity demanders can reliably get immediate execution of their orders. This concern has 

been significantly heightened following the rapid growth in algorithmic traders (hereafter 

“AT”), who harvest bid-offer spreads without any human trade-by-trade intervention through 

computer-based automated trading decisions and executions, often without pre-meditated 

directional bets, participating on both sides of the book, turning over inventory intraday with 

minimal capital investment as often as is optimal.2 In this context, this paper empirically 

investigates the participation and transactional liquidity provided by AT – the “machine” – 

and human traders – the “man” (hereafter “MT”) – during periods of market turbulence or 

stress, relative to what they do in “normal” periods, and the resultant implications for the 

quality and fragility of markets. 

Periods of market stress and turbulence are clearly characterized by significantly high 

levels of information intensity, or information-related asymmetry or uncertainty. AT should 

                                                             
1 In contrast, the traditional “market-maker” of the early nineties – like the NYSE specialist, or the competing 
market maker on NASDAQ or the London Stock Exchange – had affirmative obligations to always stand ready 
to supply liquidity and maintain orderly markets. 
2 Reports of the Tabb Group consistently estimate that high frequency traders alone – a subset of AT – now 
execute well over half of the U.S. equity trading volume. 
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arguably have a competitive speed advantage over MT during such periods, since AT can 

access and process data faster, through their framework of pre-programmed artificial 

intelligence and algorithms, without being constrained by limits to human cognition and 

bounds of human rationality in accessing and processing data across multiple sources (Biais 

and Woolley, 2011). This should lead to MT facing adverse selection costs relative to AT 

(Biais, Foucault, and Moinas, 2015). Consistent with an AT informational advantage, 

Brogaard (2010) and Hendershott and Riordan (2013) find that AT lead with respect to price 

discovery, and impound more information that human orders. However, theirs and other 

extant empirical analyses only span “normal” periods. If AT also enjoy a competitive 

advantage over MT in turbulent times as well, then it is the manual rather than the 

algorithmic voluntary liquidity suppliers that should be withdrawing from the market in those 

turbulent times. 

There are at least two important reasons why AT may reduce their participation and 

liquidity supply in turbulent markets relative to MT. First, we argue that algorithms pre-

programmed ex ante cannot deal with the complexity of turbulent periods as effectively as 

manual traders. “Data” or hard news releases are not necessarily the same as “information” – 

they have to be processed into usable information. The processing can be simple: e.g., 

comparison with prices of related assets and exploiting any arbitrage or quasi-arbitrage 

opportunities; or observing the prices across fragmented markets and trading accordingly. In 

such simple cases, AT have a clear advantage over MT. However, processing of potentially 

unrelated and unusual data or news clips into economically relevant price information can 

often be too complex for pre-programmed algorithms. Zigrand, Shin and Beunza (2011) state 

this eloquently: “… algorithms know the price of everything and the value of nothing.” This 

can be for several reasons. One, it is imperfect, subjectively interpreted through prisms of 

assumptions and priors, and extremely challenging across multiple dimensions (see, for 
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example, Mehta, Neukirchen, Pfetsch, and Poppensieker, 2012). Because of this, traders face 

“preference uncertainty”, modeled in the specific context of optimal trading strategies and 

equilibrium prices in the presence of liquidity shocks – a context directly relevant to this 

paper – by Biais, Hombert, and Weill (2014). It is seriously questionable, whether artificial 

intelligence can be pre-programmed effectively into algorithms to comprehensively cover the 

totality of outcomes that can address the entire feasible spectrum of preference uncertainties 

and economic complexities.3 Two, this challenge is made even more difficult by the fact that 

the rapid speed of trading – which is what enables HFTs to exploit price distortions before 

slow traders can – also limits the time available for information processing: Dugast and 

Foucault (2014) theorize that such constrained information processing would increase the 

incidence of ‘mini-flash crashes’ – large, sudden price drops or spikes that are immediately 

followed by an equally quick recovery – as in the ‘twitter crash’ of April, 2013.4 Three, 

periods of market stress are rare and unique, arguably posing severe challenges to algorithms 

whose decisions are based on pre-programmed routines whose parameters are set ex ante. 

The ever increasing presence and constantly changing role of other algorithms in the system 

require algorithms to adapt continually and further reduces the benefits of applying rules 

based on lessons learnt from the past. Risks of serious glitches while running new or adapting 

old algorithms are high even in normal times.5 Consequently, AT might focus on “building 

systems that deal with the worst-case scenarios, where blunt, one-size-fits-all tools suffice to 

shut down activity and to ensure the trader can exit the market as quickly as possible” 

                                                             
3 Algorithms in use in financial markets do not appear to be overly complex (Cliff, Brown, and Treleaven, 
2012). This claim is further reinforced by Zigrand, Shin, and Beunza (2011): “Most computer algorithms seem 
at the moment to largely consist of relatively short (and therefore simple) computer code. It seems that the 
inputs into the algorithm largely consist of the past behaviour and data series of this very asset itself, and 
perhaps of some related securities, mechanical news tags as well as engineering state variables such as the 
state of latency in the network, the temperature in the data center,….and the like” 
4 The Dow Jones dropped more than 150 points on a false tweet that the White House was being attacked, but 
recovered within two minutes when the tweet was recognized as being erroneous. 
5 For example, in August 2012, Knight Capital, then a 17-year-old market-making firm doing $20 billion in 
trades a day on the NYSE, lost $440 million – four times its net annual income – in 30 minutes, while running a 
new computer program. 
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(Yadav, 2015). In other words, in turbulent, unpredictable conditions, AT might minimize 

their losses by simply applying the “kill switch”. The evidence in Zigrand, Shin and Beunza 

(2011) supports the widespread use of kill switches in selected periods. In the same vein, 

Zigrand, Cliff and Hendershott (2011) also argue that AT reliance on risk management 

algorithms tends to limit participation and liquidity provision during periods of market stress. 

A corollary of the complexity argument is that AT should lose their informational 

advantage over MT during extreme events/periods of market stress.6 However, proper 

scientific evidence in this regard is limited and inconclusive. Das, Hanson, Kephart, and 

Tesauro (2001), in the spirit of Smith (1962) – who explored continuous double auction 

markets with human trader subjects under experimental laboratory-style conditions, and 

received the Nobel Prize in Economics in 2002 for this work – pitted human traders against 

robot software agents, and found that the robots dominated the humans. However, the results 

appear to have been reversed in more recent experiments under “more realistic” conditions – 

see De Luca, Szostek, Cartlidge, and Cliff (2011). 

A second reason why AT may reduce their participation and liquidity supply in 

turbulent markets relative to MT arises because AT liquidity supply activity is characterized 

by very limited commitment of capital and ultra-short intraday horizons, in contradistinction 

to traditional equity specialists and market-makers, who typically had deep pockets and 

inventory half-lives spanning days, not minutes. AT are the prototypical ‘short-horizon’ 

traders in De Long, Shleifer, Summers, and Waldmann (1990) who bear position risks only 

when they expect to profitably offload their positions within their trading horizon. The AT 

trading advantage stems from their ability to trade in and out of positions faster than others 

(Javanovic and Menkveld, 2015). Such agility is hindered when capital is locked-up in a 

                                                             
6 The view is captured by anecdotal comments like the following: “Humans are likely to be best at reacting to 
freak situations and unexpected market shocks. […]. When the winds of change hit the market, humans are still 
more adaptable, flexible and able to change with the times. While algorithms can be reprogrammed, they can’t 
be reprogrammed fast enough to take advantage of a contemporaneous shock.” (Webb and Webb, 2014). 



 5 

single position. Therefore, the lower the chances of profitable inventory rebalancing in a 

short period of time, which will be the case in a one-sided “extreme” market, the greater the 

reluctance to take a position – and, conditional on participation, the smaller the position 

undertaken. Furthermore, AT’s over-arching imperative of keeping their capital commitment 

low means that they are much more likely to frequently trade out of positions in turbulent 

markets by demanding liquidity rather than continuing to function as liquidity suppliers.  

The hypothesized reduction in participation and liquidity supply by AT in turbulent 

markets relative to MT can be exacerbated by the fact that AT is significantly more correlated 

than MT. Chaboud, Chiquoine, Hjalmarsson, and Vega (2014) argue that “there is potential 

for higher correlation in computers’ trading actions than those in humans, since computers 

need to be pre-programmed and may react similarly to a given signal”; and provide evidence 

“…. that is consistent with the actions and strategies of algorithmic traders being less 

diverse, and more correlated, than those of non-algorithmic traders.”7 They find that the 

excess correlation does not degrade market quality on average: however, they emphasize that 

they have not examined extreme periods, and the behavior in those extreme periods could 

well be different. The complexity and short horizon arguments articulated above suggest that 

the behavior in normal and extreme periods should arguably be different, because ATs could 

consider kill switches in the extreme periods, and the simultaneous application of kill 

switches in turbulent periods, across traders and even across stocks, could arguably lead to a 

severe deterioration in liquidity. In a stress situation, many algorithms can quickly coordinate 

and act simultaneously and feed each other, potentially giving rise to feedback loops that 

make markets fragile.8 The official CFTC/SEC report on the “Flash Crash” events of May 6, 

                                                             
7 Laube, Malcenieks, and Putniņš (2013) also find that high frequency trading increases the commonality in both 
returns and in liquidity for European equities. 
8 To quote Zigrand, Shin, and Beunza (2011): “A driver for future risk and catastrophes lies in the fact that the 
seemingly large bio-diversity of traders may be illusory and that in a stress situation many algorithms quickly 
and unwittingly coordinate, act in unison and feed on each other in a feedback loop, thereby leading to a 
disproportionate value destruction.” 
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2010 also discusses the destabilizing feedback effect of “hot-potato” or “pass-the-parcel” 

behavior generated by the holding of small positions for short periods: the large volume of 

trading among algorithms triggered other algorithms that sold aggressively in high volume 

markets.9 Zigrand, Cliff, and Hendershott (2011) argue that such feedback loops are the 

underlying force behind most of the financial crises, and those loops are more likely to arise, 

or at least may be harder to supervise, in AT environments. 

Clearly, it is not surprising to see extensive concerns articulated by regulators and 

policymakers that, while AT improves overall liquidity, it also generates greater dangers of 

periodic episodic illiquidity.10 The issue has been brought into sharper focus by the Flash 

Crash of May 6, 2010, and the regular occurrence of mini-crashes.11 In September 2010, 

speaking before the Security Traders Association, Mary Schapiro, then Chairman of the 

Securities and Exchange Commission, said, “Given their volume and access, high frequency 

trading firms have a tremendous capacity to affect the stability and integrity of the equity 

markets. Currently, however, [they]…. are subject to very little in the way of obligations 

either to protect that stability…. in tough times, or to refrain from exacerbating price 

volatility…. An out-of-control algorithm…. can also cause severe trading disruptions that 

harm market stability and shake investor confidence.” In July 2011, a report by 

the International Organization of Securities Commissions (IOSCO), an international body of 

securities regulators, concluded that algorithms were "…. clearly a contributing factor in 

the flash crash event of May 6, 2010.” Other regulators have also questioned the stability of 

the liquidity provided algorithmically.12 Consequently, regulatory proposals have often 

                                                             
9 CFTC & SEC (2010): Findings regarding the market events of May 6, 2010.  
10 See, for example, Foresight: The Future of Computer Trading in Financial Markets (2012) Final Project 
Report, The UK Government Office for Science, London, page 11: Executive Summary.  
11 See Sornette and Becke (2011), page 13 for examples. 
12 For example, Andrew Haldane, Executive Director for Financial Stability at the Bank of England, in his 
speech ‘Race to Zero’ (July, 2011), said: “Far from solving the liquidity problem in situations of stress, high-
frequency trading firms appear to have added to it. And far from mitigating market stress, high-frequency 
trading appears to have amplified it. High-frequency trader liquidity, evident in sharply lower peacetime bid-
ask spreads, may be illusory. In wartime, it disappears. This disappearing act, and the resulting liquidity void, 
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endeavored to impose affirmative obligations to mandate AT to ‘make’ markets even during 

periods of stress.13 Regulatory concerns are also highlighted by proposals aimed at 

constraining AT through transaction taxes, fees for and limitations on order cancellations, and 

other rules. 14  

In spite of the extensive regulatory concerns, and the two important reasons – 

environmental complexity and AT’s own short horizons – that could precipitate swift 

withdrawal of participation and liquidity supply from AT in turbulent periods, and 

consequent market fragility, extant empirical research has focused only on “normal” market 

conditions.15 In contrast, the contribution of this paper is to focus on periods of market 

turbulence and stress, where stress is measured by high and persistent volatility, and/or high 

and persistent order imbalances, and/or high and persistent bid-ask spreads. We empirically 

test whether AT participation in trades and the contribution of AT to transactional liquidity 

supply – i.e., posting of standing buy and sell limit orders that have provided trade execution 

and immediacy to other traders – is as reliable and stable as that of MT even in times of 

market stress; or whether the core reasons we have discussed – complexity and AT short 

horizons – results in AT being just the “fair weather” liquidity suppliers they are feared by 

regulators to be.  
                                                                                                                                                                                             
is widely believed to have amplified the price discontinuities evident during the Flash Crash. High-frequency 
trader liquidity proved fickle under stress, as flood turned to drought”. 
13 For example, the European Commission’s Markets in Financial Instruments Directive (MiFID II) along with a 
related regulation (MiFIR), proposed affirmative obligations requiring AT to “be in continuous operation 
during the trading hours” and also that “the trading parameters or limits of an electronic trading strategy shall 
ensure that the strategy posts firm quotes at competitive prices with the result of providing liquidity on a regular 
and ongoing basis to these trading venues at all times, regardless of prevailing market conditions.” 
14 For example, House Resolution 1068 sought to impose a trading tax of .25%, and the European Commission 
had proposed a trading tax of 0.1% on shares and bonds, and 0.01% on derivatives. Other proposals include fees 
when the number of orders cancelled by a trader exceeds a certain level; or a requirement for quotes to have a 
minimum life before they can be canceled or revised. 
15 Hendershott and Riordan (2013) find that high frequency traders play a positive role in price efficiency 
through their marketable orders. Hasbrouk and Saar (2013) find that low-latency activity improves traditional 
market quality measures such as short-term volatility, spreads, and displayed depth in the limit order book. 
Brogaard (2010) also finds that high-frequency traders provide liquidity and correct mispricing of securities. 
Hendershott, Jones, and Menkveld (2011) find that the introduction of auto-quote on the NYSE improves 
liquidity and enhances the informativeness of quotes. Raman, Robe and Yadav (2014), however, find that 
electronic market makers in the U.S. energy futures markets withdraw from trading against customer order flow 
in stressful periods, whereas the erstwhile locals in the futures pits increased their trading against customer order 
flow in such periods.  
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The empirical analyses in this paper are based on trades and orders data from the 

National Stock Exchange of India (“NSE”). NSE data are particularly suitable for this study 

because the NSE has always been an electronic order matching market with all liquidity 

suppliers always entirely voluntary, and algorithmic execution was permitted only after a 

clearly specified date in 2008 – we exploit this feature by comparing trading before and after 

algorithmic trading. In contrast, the U.S. equity markets were at least partially dealer markets 

with affirmatively obliged market makers, and not always purely electronic without any 

trading floor, which makes it difficult to isolate the specific contribution of the algorithmic 

nature of voluntary liquidity supply to any observed potential for fragility. Further, our data 

also provides broad trader classifications and flags algorithmic trades within each 

classification; thereby, enabling benchmarking algorithmic traders with other manual, 

voluntary traders of the same trader type. Such a benchmarking provides a cleaner estimate of 

the effect of automation on trading strategies. Therefore, the NSE provides an excellent 

laboratory to investigate the impact of AT on market fragility. Our results are based on 

comparing two periods across different categories of traders: May 2006, during which there 

were no AT (i.e., all were MT), and May 2012, during which there were both AT and MT. 

We document results of considerable academic and regulatory importance. First, we 

find strong evidence that, in contrast to manual traders, algorithmic traders reduce their 

participation and their transactional liquidity provision in periods of significantly high and 

persistent volatility, significantly high and persistent customer order imbalances, and 

significantly high and persistent bid ask spreads. There are several aspects of this result that 

are noteworthy: (a) the reduction in transactional liquidity provision is accompanied also by a 

massive reduction in the placement of new orders by all categories of algorithmic traders 

(relative to the manual traders in each of those categories); (b) the reduction in transactional 

liquidity provision is also accompanied by a decrease in the aggressiveness of all 
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algorithmically posted orders (relative to the corresponding aggressiveness of manually 

posted orders), except for algorithmic orders of exchange members; (c) the withdrawal in 

liquidity provision is also greatest for algorithmic traders who are external customers of the 

exchange, and significantly less for algorithmic traders who are exchange members; and (d) 

the propensity of algorithmic traders to withdraw is strongly dependent and conditional on 

the extent of persistence of abnormal market conditions, consistent with the withdrawal of 

algorithmic traders being related to both the short horizon of such traders, and the potential 

constraints in the ability of pre-programmed algorithms to deal with the complexity of market 

signals in turbulent periods. 

Second, we find that the withdrawal of algorithmic traders in stressful markets 

corresponds one-to-one with a loss of their informational advantage with respect to manual 

traders in such markets. This suggests that speed based information advantages of algorithmic 

traders disappear in the complexity of market signals in turbulent periods, and this motivates 

algorithmic traders to withdraw from voluntary liquidity provision in periods of stress.  

Third, we also find the withdrawal of algorithmic traders has a significant propensity 

to generate feedback loops that can make markets more “fragile”. Specifically, we find that a 

reduction in algorithmic trading or algorithmic liquidity provision significantly increases the 

probability of extreme market conditions. The potential for fragility is further exacerbated by 

the fact that algorithmic traders in a stock withdraw significantly from that stock even in the 

absence of stressful conditions in that stock, when another similar sized stock experiences an 

Extreme event. The withdrawal of algorithmic traders hence displays significant contagion 

and correlation across stocks, even when stressful market conditions do not.  

Overall, our results indicate that, in contrast to human traders adapting manually in 

(potentially higher latency) real time, ex-ante pre-programmed algorithmic trade execution is 

less conducive to low impact adjustment of complex information asymmetries or flows. 
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Hence, our results reinforce the extensive regulatory concerns that exist about the potential 

for systemic fragility created by algorithmic trading. 

The remainder of this paper is organized as follows. Section 2 describes the data. 

Section 3 documents the empirical results. Section 4 summarizes and offers concluding 

remarks. 

 
 

2. Data and Variables Analyzed 

NSE was created in 1994 as part of major economic reforms in India. It operates as 

pure electronic limit order book market and uses an automated screen based trading system 

that enables traders from across India to trade anonymously with one another on a real-time 

basis using satellite communication technology. NSE was the first exchange in the world to 

use satellite communication technology for trading. In terms of total number of trades, NSE is 

the second largest pure electronic LOB market in the world, just behind Shanghai Stock 

Exchange (SSE), and it is the fourth largest among all markets irrespective of market 

structure, behind NYSE, NASDAQ and SSE.16 NSE 's order books accommodate all the 

standard types of orders that exist internationally in order-driven markets, including limit 

orders, market orders, hidden orders, stop-loss orders, etc. Limit orders can be continuously 

cancelled or modified without any incremental fees. NSE operates a continuous trading 

session from 9:00 am until 3:30 pm local time. The tick size is INR 0.05 (less than USD 

0.01). Outstanding orders are not carried over to the next day. All spot trades are cleared with 

netting by novation at a clearing corporation and settled on a T + 2 basis.  Algorithmic 

trading was introduced on the NSE in April, 2008. However, it was with the introduction of 

the co-location facility in January, 2010 that resulted in significant algorithmic trading on the 

NSE.  

                                                             
16 World Federation of Exchanges, Annual Report, 2011 
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The sample consist of all the 50 stocks in Standard & Poor's CNX Nifty index, which 

represents about 60% of the market capitalization on the NSE and covers 21 sectors of the 

economy. The sample periods are two months, May 2006 and May 2012. Sample descriptive 

statistics for May 2012 are presented in Table 1. On average there are 454 trades and 28594 

shares traded in a 5-minute interval. The dataset provides complete information of trades and 

orders that enables the reconstruction of the order book to obtain best quotes and depth 

information. Spreads are calculated using the best-ask and best-bid obtained from the order 

book, and are expressed as a percentage of the mid-quote. Order imbalances are calculated as 

the difference between buy-initiated and sell-initiated trading volume, and is expressed as a 

ratio of total trading volume. Trades are classified as buy-initiated or sell-initiated using 

information from the order book.  

Further, the data also provides broad trader classifications. Traders classified as Client 

1 and Client 3 are both customers of the exchange, but Client 3 traders employ their own 

Clearing Member – typically, entities that avail such a facility are foreign institutional 

investors, mutual funds, non-resident Indians, domestic corporations, and domestic financial 

institutions. Client 2 traders are members of the exchange and trade on behalf of their clients 

and also trade for their proprietary accounts. These traders generally function as voluntary 

intermediaries at the exchange17. The data also identify orders submitted using algorithms, 

with an ‘Algo’ flag. In all our univariate and multivariate analyses, we examine algorithmic 

trading using two measures – participation and liquidity provision. Participation is calculated 

as the average of the proportion of buy-side trading volume and the proportion of sell-side 

trading volume that involves an Algorithmic trader; and liquidity provision is calculated as 

the average of the proportion of buy-side trading volume and the proportion of sell-side 

trading volume for which AT provided liquidity. A trader is deemed to be supplying liquidity 

                                                             
17 See www.nseindia.com/content/press/NSEbyelaws.pdf for further details. 
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when s/he is posting a standing limit order and demanding liquidity when s/he is “picking” an 

existing limit order through a market order or a marketable limit order. The greater the 

proportion of trading volume for which market makers are passive traders providing liquidity, 

the better the contribution to liquidity provision. All variables are calculated at 5-minute 

intervals. 

Table 2 presents trading related sample statistics for AT and different trader 

categories. AT accounts for 38% of the trading volume and 16% of the liquidity provided on 

one side of the market – on an average, they trade 38% of the buy volume and sell volume 

each, and they provided liquidity on 16% of the buy and sell volume each (and demanded 

liquidity on the remaining 22% of their trading on each side of the book). Panel B of Table 2 

presents Participation and Liquidity Provision by trader category. NSE members’ proprietary 

trading account for a little over 25% of the trading volume, and it is almost equally split 

between AT and MT. Interestingly, Category 2 MT appear to be providing more liquidity 

than their automated peers. Category 1 traders account for 34% of the trading volume, of 

which 21% is automated. Once again, AT provide less liquidity per unit volume traded than 

their MT peers. Finally, Category 3 traders account for 41% of the trading volume, and are 

mostly MT.  

 

3. Empirical Results 

3.1.Overview of methodology 

Market-makers are clearly expected to be reluctant to trade and provide liquidity during 

market crashes: for example, Floor Traders on the NYSE and Dealers in NASDAQ had both 

closed shop on ‘Black Monday’ October 19, 1987. But, AT, because of the inherent 

disadvantage in dealing with complex situations arising from electronic trading, and because 

of their objective to maximize their trading with minimal capital investment, could be 
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extremely sensitive to even minor deviations from ‘normal’ conditions. It might not take a 

market-wide crash for AT to withdraw from the market: even small perturbations have the 

potential to instigate a withdrawal. In view of this conjecture, we examine the trading and 

liquidity provision of AT when market conditions deviate from the mean by greater than two 

standard deviations.  

We study how algorithmic trading and liquidity provision change with market conditions, 

focusing specifically on periods of market stress - periods when market conditions (Eg: 

Volatility or Abs OIB) are abnormally high (greater than 2 std. deviations) for prolonged 

period of time. For example, a 5-minute period is classified as Volatility High when the 5-

minute Volatility over the past 1 hour has been greater than twice its standard deviation, 

which is calculated over the sample period. Further, we classify a 5-minute time period as an 

Extreme period when either Volatility or Spreads or Absolute OIB over the past 1 hour has 

been greater than twice its in-sample standard deviation. 

We also use the trader category provided in the dataset to conduct a Difference-in-

Difference analysis to infer the effect of automation on trading characteristics in extreme 

market conditions. The objective here is to control for the type of the traders while examining 

algorithmic activity. For example, let’s say that category 1 MT reduce their liquidity 

provision from 20% in normal conditions to 15% in stressful conditions, and category 1 AT 

reduce their liquidity provision from 25% in normal conditions to 15% in stressful conditions. 

In such a case, we infer that, of the 10% drop in liquidity provision of category 1 AT, the 

algorithmic nature of trading is, in itself, responsible only for the incremental withdrawal in 

liquidity provision of 5%. 

 

3.2. Algorithmic trading activity in different market conditions: Univariate analysis 
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 This subsection provides the results of the univariate analysis of AT activity in 

different market conditions over the sample period, May 2012.  

 As reported in Table 3, the results provide strong and statistically significant 

conclusions. First, when volatility is persistently and significantly high, AT reduce their 

participation significantly – by 9.15 percentage points or 24%.  Their overall liquidity 

provision in terms of posting of standing limit orders also falls significantly – from 16% to 

12%, a 25% drop in liquidity provision. Second, when bid-ask spreads are significantly and 

persistently high, AT participation and liquidity provision again decrease significantly, by 

18% each. Third, when absolute order imbalance is significantly and persistently high, the 

results are quite similar to the aforementioned conclusions in term of participation - it drops 

by 34%. However, the drop in liquidity provision - by 22% - is not statistically significant. 

The more toxic the order flow, the lower is the extent of participation by AT. Finally, and not 

surprisingly, periods classified as Extreme, also experience fairly large and statistically 

significant drops in participation and liquidity provision – by 21% each. Overall, the 

univariate analysis clearly indicates that AT tend to withdraw and provide less liquidity 

during stressful periods. 

Table 3, Panel B provides results for the trading behavior of AT in extreme conditions 

that have not necessarily persisted for a relatively long time. In this table, we classify periods 

as Extreme when the market variables have been greater than two standard deviations for 30, 

15 and 5 minutes (instead of one hour).  

Our results show that the persistence of disturbances is an extremely important factor 

in the withdrawal of AT in extreme periods. Table 3, Panel B shows that, when turbulent 

conditions persisted for 5 minutes, algorithmic trading is mostly unaffected.  We observe a 

significant drop in algorithmic trading and liquidity provision for persistence greater than 5 

minutes. Moreover, the withdrawal of algorithmic trading and liquidity provision almost 
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linearly increases with the persistence of market stress conditions. The more persistence there 

is, the greater the withdrawal in algorithmic trading and liquidity provision. Clearly, the 

propensity of algorithmic traders to withdraw is strongly dependent and conditional on the 

extent of persistence of abnormal market conditions, consistent with the withdrawal of 

algorithmic traders being related to both the short horizon of such traders, and the potential 

constraints in the ability of pre-programmed algorithms to deal with the complexity of market 

signals in turbulent periods.  

Next, we examine whether the behavior of algorithmic traders is different in extreme 

conditions that are systematic in nature. To that extent algorithmic traders are unlikely to 

cause systematic stressful conditions, these tests arguably examine the change in algorithmic 

trading around exogenously created stressful conditions. To identify systematic events, we 

first decompose firm-level volatility, OIB and spreads into systematic and idiosyncratic 

components using simple market models. Next, we repeat the previous tests, but now on the 

systematic components of volatility, OIB and spreads. As shown in Table 4, the results show 

that AT withdraw and provide less liquidity even when the stressful conditions are systematic 

in nature. More specifically, AT withdraw more than 4.6 percentage points (or 12.1%) and 

provide 2.1 percentage points (or 13.3%) less liquidity during systematic extreme events. 

Results for extreme volatility and spread related events are qualitatively similar. Furthermore, 

as shown in Panel B, AT withdrawal monotonically increases with the persistence of the 

systematic stressful conditions. 

In Table 5, we examine whether algorithmic trading changes differently in 

information related and liquidity related extreme events. A 5-minute period is classified as an 

Information related extreme event when the 5-minute Volatility over the past 1 hour has been 

greater than twice its standard deviation over the sample period and the corresponding Spread 

hasn’t. Similarly, a 5-minute period is classified as a Liquidity related extreme event when the 
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5-minute Spread over the past 1 hour has been greater than twice its standard deviation over 

the sample period and the corresponding Volatility hasn’t. As expected, results show that AT 

withdrawal in terms of participation and liquidity provision is greater during information 

related extreme events than during liquidity related extreme events. More specifically, during 

information related extreme events, AT participation and liquidity provision drop by 9.2 

percentage points (or 24.2%) and 3.9 percentage points (or 24.3%). Similarly, during 

liquidity related events, AT participation and liquidity provision drop by 6.62 percentage 

points (or 17.5%) and 2.8 percentage points (or 17.2%). Overall, irrespective of the nature of 

the stressful period (systematic or idiosyncratic, information or liquidity related) ATs 

significantly withdraw in terms of participation and liquidity provision. 

A natural follow-up question is: don’t all voluntary traders withdraw during periods of 

market stress? Hence, in our next analysis, we compare AT with other voluntary traders of 

the same trader-category. The difference-in-difference analysis of trading participation and 

liquidity provision provides a more robust understanding of incremental influence of 

automation on trading strategies. The results are presented in Table 6. 

In Panel A, the control group consists of manual traders in May, 2012, and in Panel B, 

all traders from May, 2006 are used as a control group. Extreme periods in the May, 2006 

sample are identified as they are in the May, 2012 sample. In both the periods the control 

group consists of voluntary traders that operate in electronic markets. Hence, the difference-

in-difference analysis yields a clean estimate of the effect of automation on trading strategies. 

Panel A presents numerous results.  First, category 1 traders significantly withdraw during 

periods of market stress. However, category 1 AT traders withdraw significantly withdraw 

more than the category 1 MT traders. More specifically, participation rate of category 1 AT 

drops by 9.1 percentage points, which is 1.3 times the same variable for category 1 MT 

traders; similarly liquidity provision decreases by 4.6 percentage points, which is more than 5 
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times the same for MT category 1 traders. These results clearly show that, even after 

controlling for trader fixed effects, voluntary automated traders are more sensitive to extreme 

events than their MT peers. Second, similar to category 1 case, algorithmic category 3 traders 

also withdraw significantly more than their MT peers in terms of trading participation and 

liquidity provision; but AT themselves don’t change their trading activity significantly during 

extreme events. Had we only analyzed algorithmic trading of category 2 traders, we would 

have inferred that they don’t leave the markets in stressful conditions! However, after we 

control for general trading characteristics of their peers, we observe that the incremental 

effect of automation is negative and significant. Finally, category 2 traders provide a very 

different story. Here, we find no significant difference in the way AT and MT react to 

extreme events, and also that category 2 AT significantly increase their liquidity provision in 

stressful market condition.  Significant difference between sell-side (category 2) and buy-side 

(category 1and 3) AT during extreme events highlights the heterogeneity amongst AT 

(Hagströmer and Nordén, 2013). Also, sell-side algorithms are more concerned about the 

reputational costs of withdrawing liquidity when it is required the most.  

Results in Panel B are qualitatively similar to those presented in Panel A – category 1 

algorithmic traders withdraw liquidity the most and category 2 algorithmic traders withdraw 

the least. Again, category 1 algorithmic traders withdraw significantly more than the control 

sample during stressful market conditions – automation adversely affects liquidity provision. 

Also, interestingly, category 1 traders in 2006 increase their Participation and Liquidity 

Provision during Extreme events. As reported in Panel A, even manual traders in 2012 

withdraw during periods of stress. Algorithmic traders appears to have adversely affected the 

‘ecology’ of the market itself.  Further, category 2 algorithmic traders significantly increase 

their trading activity and liquidity provision more than their control sample. This results 

further highlights the differences between buy-side and sell-side algorithmic traders and the 
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inherent heterogeneity amongst algorithmic traders. Finally, we do not find any significant 

difference between category 2 algorithmic traders in 2012 and category 2 traders in 2006.  

 

3.3.Algorithmic trading activity in different market conditions: Multivariate Analysis 

In this section, we again examine the changing nature of algorithmic trading during 

periods of market stress, but in a multivariate setting. To this end, we regress algorithmic 

Participation and Liquidity Provision during a 5-minute interval on market quality variables – 

spreads, volatility and absolute order imbalance – and other control variables – returns and 

total trading volume. All these independent variables are calculated using data from the past 

hour, and they are also standardized by stock. We also control for time-of-the-day effects by 

including a dummy variable for the opening and closing hours each. 

Results from the analysis, presented in Table 7, further confirm the previously discussed 

univariate results. First, algorithmic trading Participation and Liquidity Provision both drop 

significantly in Extreme conditions – by 0.2 standard deviations each. Second, algorithmic 

participation decreases with volatility, but increases when volatility is very high. However, 

the increased participation appears to be a liquidity demanding one, as reported in Liquidity 

Provision results – algorithmic Liquidity Provision drops significantly when volatility is high. 

Third, algorithmic participation is only related to spreads when they are very large – and the 

relation is negative and significant. Algorithmic Liquidity Provision is positively related to 

spreads, but the relation is reversed when Spreads are very large. Algorithmic traders turn 

from liquidity providers to liquidity demanders when the demand for liquidity is high. 

Finally, Participation and Liquidity Provision are negatively related to Abs OIB - even a 

moderate increase is negatively related. To the extent absolute OIB is a proxy for informed 

order flow, algorithms appear to be extremely sensitive to toxic order flow. In sum, 

irrespective of the variable used to identify periods of market stress, AT appear to 
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withdrawing participation and liquidity during periods of market stress - precisely when 

liquidity and intermediation are needed the most.  

Table 8 presents results of a similar analysis, except that the dependent variables are 

∆Participation and ∆ Liquidity Provision - difference between Participation and Liquidity 

Provision of AT and MT of the same client category in a given 5-minute interval 

respectively. Instead of explaining the algorithmic trading itself, we examine and explain the 

difference in trading activity of AT and MT belonging to the same trader classification. 

Hence, the dependent variable here is a more robust measure of the incremental effect of 

automation on trading strategies. The results are mostly consistent with those presented in the 

previous tables. Algorithmic traders withdraw significantly more than their MT peers during 

Extreme events in general; more specifically, they are significantly more sensitive to wide 

spreads and large (absolute) order imbalances. However, they do not withdraw liquidity 

significantly more than their MT peers during periods of high volatility. Overall, these results 

provide strong confirmation that AT significantly reduce their contribution to liquidity 

provision in periods of market stress. 

 

3.4.Limit order activity of algorithmic traders and market conditions 

An important question following the analysis of AT trading is whether reduction in 

algorithmic trades during extreme conditions is because of their withdrawal from the order 

book, or due to algorithmic traders posting relative more passive orders. This subsection 

focuses on AT limit order activity in different market conditions over the sample period, May 

2012. AT limit order activity is measured as the proportion of the number and the volume of 

new orders submitted by algorithmic traders; and the proportion of the number and volume of 

net-new orders (new orders minus cancelled orders) submitted by algorithmic traders. 
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We first analyze and discuss the withdrawal of algorithmic traders from the order book 

during extreme conditions. Our results, presented in Table 9, show that AT withdrawal 

activity in the order book during extreme conditions is very similar to their withdrawal 

activity in the trade book. First, when volatility is persistently and significantly high, AT 

reduce their participation in terms of new orders significantly – by 8.93 percentage points or 

18%; and in terms of net new orders by 13 percentage points or 31%.  The volume of new 

and net-new algorithmic orders also drops during extreme market conditions – by 21% and 

48% respectively. Second, when bid-ask spreads are significantly and persistently high, AT 

new orders and net-new orders decrease significantly, by 12 and 17 percentage points (or 

26% and 42%) respectively; and volume of new and net-new orders also drop similarly. 

Third, when absolute order imbalance is significantly and persistently high, the results are 

quite similar to the aforementioned conclusions in term of number and volume of new and 

net-new orders. However, the drop in volume of net-new orders - by 37% - is not statistically 

significant. Finally, and not surprisingly, periods classified as ‘Extreme’ also experience 

fairly large and statistically significant drops in limit order activity. The proportion of new 

and net-new orders drops significantly by 22% and 36% respectively. The drops in the 

proportion of the volume of new and net-new orders – by 18% and 46% - are also statistically 

highly significant.  

Next, we analyze the change in the relative pricing or aggressiveness of the new 

algorithmic and manual orders that are actually submitted during periods of market stress. 

The aim of this analysis is to examine whether the reduction in AT trades (relative to MT) 

also because AT’s orders reflect a higher price for liquidity supply services. Our results are in 

the last column of Table 9. Clearly, the change in the relative aggressiveness of orders is not 

statistically significant in this specification.  
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Overall, our univariate analysis clearly indicates that, in addition to the significant drop in 

the numbers of algorithmic trades during extreme conditions, AT also withdraw heavily from 

the order book itself during stressful periods, instead of just posting less aggressive orders. 

Similar to the analysis of trades, we next employ a difference-in-difference analysis of 

algorithmic activity, where the control group consists of the same category of manual traders, 

to provide a cleaner analysis of the incremental influence of automation on limit order book 

activity. As seen from Table 10, the analysis provides various important results. Most 

importantly, all categories of AT withdraw significantly more than their MT counterparts. 

First, for category 1 ATs, the proportion of new orders and net-new orders, drops 

dramatically by 6 and 11 percentage points respectively, which are 8.4 and 6.1 times the 

corresponding variable for category 1 MT traders. Similarly the volume of new and net-new 

orders decreases massively by 4 and 18.1 percentage points, which are 4.7 and 2.7 times the 

corresponding variable for MT category 1 traders. Second, even though category 3 AT don’t 

change their trading activity significantly during extreme events, algorithmic category 3 

traders withdraw significantly more than their MT peers in terms of new and net-new orders. 

Third, algorithmic category 2 traders withdraw the least, but they also withdraw very 

significantly more than their MT peers. 

As before, we also analyze, separately for each category of traders, the change in the 

relative pricing of limit orders for the traders who actually place orders. The results are in the 

last column of Table 10, and are much more conclusive than with the lower power overall 

analyses earlier in the last column of Table 9. Here, we find that category 1 and 3 ATs that 

remain in the market place significantly less aggressive orders than their manual peers in 

stressful conditions, effectively increasing the price at which they are willing to supply 

liquidity. However, there is no significant change in the relative aggressiveness of orders 

placed by category 2 ATs, i.e., exchange members. These results are consistent with the 
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results of our analysis of algorithmic trades, which showed that category 2 ATs do not also 

significantly withdraw during stressful market conditions in terms of trade participation. That 

said, as discussed in the foregoing paragraph, category 2 traders do reduce the flow of new 

orders significantly more than corresponding MT category 2 traders. The differences between 

category 2 and other trader categories further underline the importance of understanding 

heterogeneity amongst AT (Hagströmer and Nordén, 2013).  

Overall, to summarize, the results in this section clearly show that all categories of 

voluntary automated traders withdraw from the order book significantly more than their 

manual peers during stressful market conditions; and furthermore, with the exception of 

exchange members, also place orders that are significantly less aggressive than the orders of 

the corresponding group of manual traders.  

 

3.5.Informativeness of algorithmic traders and market conditions 

In this section, we examine whether, in accordance with the complexity hypothesis, AT 

lose their informational advantage during periods of persistent market stress, which arguably 

display a more complex financial environment. Informativeness is first calculated for each 

trade and then it is aggregated for a trader category during a 5-minute interval. For buys, 

price change is measured as the midquote prevailing 5 min (15, 30 or 60 min) after 

transaction less the buy price, expressed as a ratio of the buy price. For sells, price change is 

measured as the sell price less the midquote 5 min (15, 30 or 60 min) after order submission, 

expressed as a ratio of the sell price. Informativeness for a trader category during a 5-minte 

interval is calculated as the volume weighted average of all price changes relating to the 

trader category during the 5-minutes interval. 

Our results, presented in Table 11 Panel A, provide various insights. First, consistent with 

the extant literature, we find that, in ‘normal’ conditions, AT are significantly more informed 
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than MT; and their informational advantage manifests over all time horizons we analyze, 

ranging from 5 minutes to 60 minutes. Moreover, MT appear to be consistently losing money 

over all horizons. The situation is drastically reversed in ‘Extreme’ periods. Here, AT are 

negatively informed over all horizons except for the very short-term. Manual traders, 

however, are significantly informed over all horizons. The difference between AT and their 

MT peers is significantly negative over all horizons. The difference-in-difference in 

informativeness unambiguously conveys that AT significantly lose their informational 

advantage during periods of market stress – evidence that strongly supports the complexity 

hypothesis.  

Panel B, C and D provide results for scenarios when extreme conditions persist for 

30-minute, 15-minute and 5-minute periods. In these panels, we classify periods as Extreme 

when the market variables have been greater than two standard deviations for 30, 15 and 5 

minutes (instead of one hour) respectively. Consistent with our previous results, this analysis 

also shows that the persistence of disturbances is an important factor. Panel D shows that, 

when turbulent conditions persisted for 5 minutes, the informativeness of algorithmic trading 

is mostly unaffected. However, we observe a significant drop in the informativeness of 

algorithmic trades when extreme conditions persist for more than 15 minutes. The more 

persistent an event, the greater is the reversal in the relative informativeness of algorithmic 

traders. This evidence again strongly supports the complexity hypothesis. 

Next, in Table 12, we present results of a similar analysis, but the differences in 

informativeness are calculated between AT and MT of the same trader category. Such an 

analysis not only controls for trader fixed effects, but also enables a buy-side vs. sell-side 

comparison of AT. Stressful periods are defined based on persistence of volatility, spreads, 

and/or order imbalances for 60 minutes. The results show that the conclusions from Table 11 

are driven by category 1 algorithmic traders. Trader category 1 AT are the group that 
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significantly lose their level of informativeness during extreme conditions to category 1 MT. 

Category 2 AT do not display any informativeness in either normal or stressful periods, but, 

since category 2 MT lose their informativeness in stressful periods, category 2 AT appear to 

perform relatively better in such stressful periods. Similarly, category 3 traders – whether 

they are AT or MT – do not display any informativeness in any period, and there is no 

significant change in relative informativeness of category 3 AT. Each of these results are 

robust to both short and long-term horizons.  

Overall, our results in this section show that there is a close correspondence between the 

change in informativeness and the change in participation and liquidity provision of AT. This 

close correspondence strongly supports the complexity hypothesis. Though we have not 

formally established causality, our results suggest that AT exit markets during periods of 

market stress because they lose their informational competitive advantage. 

 

3.6.Probability of extreme events and algorithmic trading 

Having seen that AT withdraw Participation and Liquidity Provision in extreme 

conditions, we analyze if their withdrawal in turn further increases the probability of 

observing an extreme event in the next 5-minute interval. This analysis speaks directly to the 

issue of market fragility. A vicious circle of AT withdrawal and extreme events could quickly 

destabilize markets. Logit models are used to explain the probability of observing an extreme 

event in the next 5-minute interval as a function of algorithmic traders’ Participation and 

Liquidity Provision and other pertinent variables over the past hour. Our results are presented 

in Table 13. 

Our results show that, across all specifications, as AT withdraw from trading and/or 

liquidity provision, the probability of observing an extreme event in the next 5 minute 

interval increases significantly. Of course, extreme events are persistent by design, hence we 
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also control for prevailing market conditions – volatility, spreads, absolute OIB, volume and 

returns. Our results show that even after controlling for the persistent nature of extreme 

market conditions, algorithmic traders’ withdrawal significantly increases the probability of 

extreme events. A one standard deviation decrease in Participation increases the odds of an 

extreme event by at least 28%; and a one standard deviation decrease in Liquidity Provision 

increases the odds of an extreme event by at least 30%. 

 

 

3.7. Algorithmic trading, extreme events and contagion 

In this subsection, we examine whether the withdrawal of algorithmic trading and 

liquidity provision during stressful conditions documented earlier also spreads across to 

stocks that haven’t experienced extreme events. Once again, an analysis of the contagion 

effects of withdrawal of algorithmic traders speaks directly to the issue of market fragility. To 

this end, a 5-minute interval, for stock i, is classified as an Extreme-Contagion event when 

any stock j (< > i) has an Extreme event during the same 5-minute interval, but stock i itself 

does not. Volatility, OIB and spreads related contagion events are similarly identified.  

The results of this analysis are presented in Table 14. The results clearly show that, 

conditional on any one stock experiencing an extreme market conditions during a 5-minute 

interval, algorithmic traders significantly withdraw in terms of participation and liquidity 

provision even in stocks not experiencing stressful market conditions during the 5-minute 

interval. More specifically, AT reduce their participation and liquidity provision significantly 

– by 2.8 percentage points (or 7.4%) and 0.8 percentage points (or 4.9%). Similarly, as shown 

in the table, withdrawal in algorithmic trading and liquidity provision during contagion 

events is statistically and economically significant for volatility, OIB and spread related 

events as well.  
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4. Concluding Remarks 

We empirically investigate whether the participation and transactional liquidity 

provided by algorithmic traders – i.e., posting of standing buy and sell limit orders that have 

provided trade execution and immediacy to other traders – is as reliable and stable as that of 

human traders even in times of market stress; or whether algorithmic traders are just the “fair 

weather” liquidity suppliers they are sometimes feared by regulators to be.  

We document results of considerable academic and regulatory importance. First, we 

find strong evidence that, in contrast to manual traders, algorithmic traders reduce their 

participation and their transactional liquidity provision in periods of significantly high and 

persistent volatility, significantly high and persistent customer order imbalances, and 

significantly high and persistent bid ask spreads. There are several aspects of this result that 

are noteworthy: (a) the reduction in transactional liquidity provision is accompanied also by a 

significantly greater magnitude of reduction in the placement of new orders by all categories 

of algorithmic traders (relative to the manual traders in each of those categories); (b) the 

reduction in transactional liquidity provision is also accompanied by a decrease in the 

aggressiveness of all algorithmically posted orders (relative to the corresponding 

aggressiveness of manually posted orders), except for algorithmic orders of exchange 

members; (c) the withdrawal in liquidity provision is also greatest for algorithmic traders who 

are external customers of the exchange, and significantly less for algorithmic traders who are 

exchange members; and (d) the propensity of algorithmic traders to withdraw is strongly 

dependent and conditional on the extent of persistence of abnormal market conditions, 

consistent with the withdrawal of algorithmic traders being related to both the short horizon 

of such traders, and the potential constraints in the ability of pre-programmed algorithms to 

deal with the complexity of market signals in turbulent periods. 
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Second, we also find that the withdrawal of algorithmic traders in stressful markets 

corresponds one-to-one with a loss of their informational advantage with respect to manual 

traders in such markets. This suggests that the speed based information advantages of 

algorithmic traders disappear in the complexity of market signals in turbulent periods, and 

this motivates algorithmic traders to withdraw from voluntary liquidity provision in periods 

of stress.  

Third, we also find the withdrawal of algorithmic traders has a significant propensity 

to generate feedback loops that can make markets more “fragile”. Specifically, we find that a 

reduction in algorithmic trading or algorithmic liquidity provision significantly increases the 

probability of extreme market conditions. The potential for fragility is further exacerbated by 

the fact that algorithmic traders in a stock withdraw significantly from that stock even in the 

absence of stressful conditions in that stock, when another similar sized stock experiences an 

Extreme event. The withdrawal of algorithmic traders hence displays significant contagion 

and correlation across stocks, even when stressful market conditions do not.  

Overall, our results indicate that, in contrast to human traders adapting manually in 

(potentially higher latency) real time, ex-ante pre-programmed algorithmic trade execution is 

less conducive to low impact adjustment of severe information asymmetries or high intensity 

information flows. Hence, our results reinforce the extensive regulatory concerns that exist 

about the potential for systemic fragility created by algorithmic trading.  
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Table 1 – Sample Description 
 This table presents market characteristics for the time-period May, 2012. All market variables are calculated 
over 5 minute intervals. Volatility, Return, (Bid-Ask) Spread, Volume and (relative) Order Imbalances (OIB) 
are calculated as done in the literature.  
 

Table 2 – Algorithmic Trading Description 
This table presents characteristics of Algorithmic trading for the time-period May, 2012. All market variables 
are calculated over 5 minute intervals. Traders are classified into three client categories by NSE (National Stock 
Exchange). Algo is a binary variable that identifies algorithmic messages. Traders classified as Client 1 and 
Client 3 are both customers of the exchange, but Client 3 traders employ their own Clearing Member –typically, 
entities that avail such a facility FIIs, Mutual Funds, NRIs, Domestic Body Corporates & Domestic Financial 
Institutions etc. Client 2 traders are members of the exchange. Participation is the proportion of trading volume 
that involves an Algorithmic trader either on the buy or the sell side. Liquidity Provision is the proportion of 
trading volume for which algorithmic traders provided liquidity, which is calculated based on the aggressiveness 
of the orders involved in the trade.  
 
Panel A: Algo Participation and Liquidity Provision 

Algo Participation Liquidity Provision  
1 37.77% 16.07% 
0 62.23% 33.94% 

 
 
Panel B: Algo Participation and Liquidity Provision by trader category  

Clients Algo Participation Liquidity Provision  

1- Customers 
1 21.14% 10.54% 
0 12.68% 7.62% 

    

3- Customers with Special Custodians 1 4.11% 2.56% 
0 36.69% 18.47% 

    

2- NSE Members 
1 12.52% 2.96% 
0	 12.86%	 7.85%	

  

  Volatility Return Spreads  Volume  #Trades  OIB Abs OIB 
Mean 0.49% -0.01% 0.15% 28597.64 454.132 -1.32% 33.58% 

Median 0.09% 0.00% 0.05% 10046 256 -1.64% 26.66% 
Std 9.39% 9.41% 7.69% 73099.52 696.442 43.08% 27.01% 
P25 0.03% -0.10% 0.03% 2616 86 -28.40% 12.30% 
P75 0.20% 0.09% 0.08% 29688 573 24.87% 47.65% 
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Table 3 – Algorithmic Trading by Market Conditions – Univariate Analysis 
This table presents univariate analysis of algorithmic trades during periods of market stress- periods when 
market conditions (Eg: Volatility or Abs OIB) are abnormally high (greater than 2 std. deviations) for prolonged 
period of time. For example, a 5-minute period is classified as Volatility High when the 5-minute Volatility over 
the past 1 hour has been greater than twice its standard deviation over the sample period. A 5-minute interval is 
classified as Extreme when either Volatility or Spreads or Absolute OIB over the past 1 hour has been greater 
than twice its standard deviation calculated over the sample period. Panel B reports results from similar analysis 
when Extreme conditions are identified based on 30, 15 and 5 minute persistence of high Volatility or Spreads or 
Absolute OIB. Algo is a binary variable that identifies algorithmic messages. Participation is the proportion of 
trading volume that involved an Algorithmic trader either on the buy or the sell side. Liquidity Provision is the 
proportion of trading volume for which algorithmic traders provided liquidity, which is calculated based on the 
aggressiveness of the orders involved in the trade. The analysis is conducted using data from May, 2012. t-
statistics are also reported.  
Panel A: 1 Hour Persistence 

Market Conditions N Participation Liquidity Provision  
Extreme Conditions 347 29.62% 12.66% 
Normal Conditions 62638 37.82% 16.08% 

Difference   -8.20% -3.42% 
t-stat   -7.96 -5.88 

        
Volatility High 201 28.65% 12.07% 

Volatility Otherwise 62784 37.80% 16.08% 
Difference   -9.15% -4.01% 

t-stat   -6.78 -5.25 
        

Spreads High 141 30.94% 13.07% 
Spreads Otherwise 62844 37.79% 16.07% 

Difference   -6.85% -3.00% 
t-stat   -4.25 -3.3 

        
Abs OIB High 10 24.81% 12.60% 

Abs OIB Otherwise 62975 37.77% 16.07% 
Difference   -12.96% -3.47% 

t-stat   -2.14 -1.01 

Panel B: Shorter Persistence 
Market Conditions N Participation Liquidity Provision  

30 min Persistence  
Extreme Conditions 960 33.51% 15.01% 
Normal Conditions 62025 37.84% 16.08% 

Difference   -4.33% -1.07% 
t-stat   -6.96 -3.05 

15 min Persistence 
Extreme Conditions 1790 34.48% 15.21% 
Normal Conditions 61195 37.87% 16.09% 

Difference   -3.39% -0.88% 
t-stat   -7.38 -3.41 

5 min Persistence 
Extreme Conditions 5128 37.26% 16.26% 
Normal Conditions 57857 37.82% 16.05% 

Difference   -0.56% 0.21% 
t-stat   -2 1.37 
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Table 4 – Algorithmic Trading and Systematic Events – Univariate Analysis 
This table presents univariate analysis of algorithmic trades during periods of systematic market stress- periods 
when the systematic component of market conditions (Eg: Volatility or Abs OIB) are abnormally high (greater 
than 2 std. deviations) for prolonged period of time. For example, a 5-minute period is classified as Volatility 
High when the systematic component of 5-minute Volatility (estimated through a market model) over the past 1 
hour has been greater than twice its standard deviation over the sample period. A 5-minute interval is classified 
as Extreme when the systematic component of either Volatility or Spreads or Absolute OIB over the past 1 hour 
has been greater than twice its standard deviation calculated over the sample period. Panel B reports results from 
similar analysis when Extreme conditions are identified based on 30, 15 and 5 minute persistence. Algo is a 
binary variable that identifies algorithmic messages. Participation is the proportion of trading volume that 
involved an Algorithmic trader either on the buy or the sell side. Liquidity Provision is the proportion of trading 
volume for which algorithmic traders provided liquidity, which is calculated based on the aggressiveness of the 
orders involved in the trade. The analysis is conducted using data from May, 2012. t-statistics are also reported.  

Panel A: 1 Hour Persistence 

Market Conditions N Participation Liquidity Provision  

Extreme Conditions 167 33.22% 13.94% 
Normal Conditions 62818 37.78% 16.07% 

Difference   -4.56% -2.13% 
t-stat   -3.08 -2.55 

        

Volatility High 133 34.78% 14.90% 
Volatility Otherwise 62852 37.78% 16.07% 

Difference   -3.00% -1.17% 
t-stat   -1.8 -1.25 

        
Spreads High 34 27.09% 10.19% 

Spreads Otherwise 62951 37.78% 16.07% 
Difference   -10.69% -5.88% 

t-stat   -3.26 -3.17 
 
Panel B: Shorter Persistence 

Market Conditions N Participation Liquidity Provision  
30 min disturbances 

Extreme Conditions 1292 34.39% 15.18% 
Normal Conditions 61693 37.84% 16.08% 

Difference   -3.45% -0.90% 
t-stat   -6.42 -2.96 

15 min disturbances 
Extreme Conditions 4325 36.36% 15.65% 
Normal Conditions 58660 37.88% 16.10% 

Difference   -1.52% -0.45% 
t-stat   -5.04 -2.63 

5 min disturbances 
Extreme Conditions 6966 37.53% 15.99% 
Normal Conditions 56019 37.80% 16.07% 

Difference   -0.27% -0.08% 
t-stat   -1.13 0.58 
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Table 5 – Algorithmic Trading, Information and Liquidity Events – Univariate Analysis 
This table presents univariate analysis of algorithmic trades during periods of information and liquidity related 
market stress. A 5-minute period is classified as an Information related extreme event when the 5-minute 
Volatility over the past 1 hour has been greater than twice its standard deviation over the sample period and the 
corresponding Spread hasn’t. Similarly, a 5-minute period is classified as a Liquidity related extreme event 
when the 5-minute Spread over the past 1 hour has been greater than twice its standard deviation over the 
sample period and the corresponding Volatility hasn’t. Algo is a binary variable that identifies algorithmic 
messages. Participation is the proportion of trading volume that involved an Algorithmic trader either on the 
buy or the sell side. Liquidity Provision is the proportion of trading volume for which algorithmic traders 
provided liquidity, which is calculated based on the aggressiveness of the orders involved in the trade. The 
analysis is conducted using data from May, 2012. t-statistics are also reported.  

Market Conditions N Participation Liquidity Provision  

Extreme Conditions - Information  194 28.65% 12.18% 

Normal Conditions 62791 37.80% 16.08% 

Difference   -9.15% -3.90% 
t-stat   -6.66 -5.01 

        

Extreme Conditions - Liquidity 131 31.17% 13.31% 

Volatility Otherwise 62854 37.79% 16.07% 

Difference   -6.62% -2.76% 
t-stat   -3.96 -2.92 
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Table 6 – Algorithmic Trading by Market Conditions – Difference-in-Difference 
Analysis 
This table presents a difference-in-difference analysis of algorithmic trades during periods of market stress- 
periods when market conditions (Eg: Volatility or Abs OIB) are abnormally high (greater than 2 std. deviations) 
for prolonged period of time. For example, a 5-minute period is classified as Volatility High when the 5-minute 
Volatility over the past 1 hour has been greater than twice its standard deviation over the sample period. A 5-
minute interval is classified as Extreme when either Volatility or Spreads or Absolute OIB over the past 1 hour 
has been greater than twice its standard deviation calculated over the sample period. Traders classified as Client 
1 and Client 3 are both customers of the exchange, but Client 3 traders employ their own Clearing Member –
typically, entities that avail such a facility FIIs, Mutual Funds, NRIs, Domestic Body Corporates & Domestic 
Financial Institutions etc. Client 2 traders are member of the exchange. Participation is the proportion of trading 
volume that involved an Algorithmic trader either on the buy or the sell side. Liquidity Provision is the 
proportion of trading volume for which algorithmic traders provided liquidity, which is calculated based on the 
aggressiveness of the orders involved in the trade. In Panel A, the analysis is conducted using data only from 
May, 2012. In Panel B, the analysis employs data from both 2006, May and 2012. t-statistics are also reported.  
 
Panel A 
 
Client Algo Market Conditions N Participation  Liquidity Provision  

1 1 Extreme 347 12.1% 5.9% 
1 1 Otherwise 62638 21.2% 10.6% 

    Difference   -9.1% -4.6% 
    t-stat   -9.50 -8.37 
            

1 0 Extreme 347 8.9% 5.6% 
1 0 Otherwise 62638 12.7% 7.6% 

    Difference   -3.9% -2.0% 
    t-stat   -4.59 -3.72 
    Difference-in-Difference -5.21% -2.60% 
    t-stat   -4.10 -3.32 
            

3 1 Extreme 347 4.6% 2.8% 
3 1 Otherwise 62638 4.1% 2.6% 

    Difference   0.5% 0.2% 
    t-stat   1.68 1.07 
            

3 0 Extreme 347 46.9% 23.3% 
3 0 Otherwise 62638 36.6% 18.4% 

    Difference   10.3% 4.8% 
    t-stat   9.22 7.61 
    Difference-in-Difference -9.76% -4.63% 
    t-stat   -8.49 -6.99 

      
2 1 Extreme 347 12.9% 4.0% 
2 1 Otherwise 62638 12.5% 3.0% 

    Difference   0.4% 1.0% 
    t-stat   -0.71 -4.87 
            

2 0 Extreme 347 14.6% 8.5% 
2 0 Otherwise 62638 12.9% 7.8% 

    Difference   1.8% 0.6% 
    t-stat   -2.86 -1.42 
    Difference-in-Difference -1.43% 0.38% 
    t-stat   -1.75 0.80 
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Panel B 
Client Year Algo Market Conditions N Participation  Liquidity Provision  

1 2012 1 Extreme 347 12.1% 5.9% 
1 1 Otherwise 62638 21.2% 10.6% 

      Difference   -9.1% -4.6% 
      t-stat   -9.50 -8.37 
              

1 2006 0 Extreme 1294 32.7% 18.3% 
1 0 Otherwise 70384 29.2% 16.3% 

      Difference   3.5% 2.1% 
      t-stat   5.26 5.15 
      Difference-in-Difference -12.54% -6.71% 
      t-stat   -15.28 -13.85 
              

3 2012 1 Extreme 347 4.6% 2.8% 
3 1 Otherwise 62638 4.1% 2.6% 

      Difference   0.5% 0.2% 
      t-stat   1.68 1.07 
              

3 2006 0 Extreme 1294 43.1% 19.8% 
3 0 Otherwise 70384 43.5% 20.7% 

      Difference   -0.4% -0.9% 
      t-stat   -0.63 -2.65 
      Difference-in-Difference 0.86% 1.09% 
      t-stat   1.89 1.55 
              

2 2012 1 Extreme 347 12.9% 4.0% 
2 1 Otherwise 62638 12.5% 3.0% 

      Difference   0.4% 1.0% 
      t-stat   0.71 4.87 
              

2 2006 0 Extreme 1294 24.3% 11.9% 
2 0 Otherwise 70384 27.4% 13.0% 

      Difference   -3.1% -1.2% 
      t-stat   -7.63 -4.62 
      Difference-in-Difference 3.48% 2.19% 
      t-stat   7.56 9.41 
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Table 7 – Algorithmic Trading by Market Conditions – Multivariate Analysis 
This table presents regression analysis of algorithmic trades during periods of market stress- periods when 
market conditions (Eg: Volatility or Abs OIB) are abnormally high (greater than 2 std. deviations) for prolonged 
period of time Periods of market stress are identified as periods when market conditions (Eg: Volatility or CD 
Imbalance) are abnormally high (greater than 2 std. deviations) for prolonged period of time. For example 
Volatility High is a binary variable equal to 1 when 5-min Volatility (and/or CD Imbalance) over the past 1 hour 
has been greater than twice its standard deviation over the sample period. Extreme Conditions is a binary 
variable equal to 1 when either Volatility or Spreads or Absolute OIB over the past 1 hour has been greater than 
twice its standard deviation calculated over the sample period. Participation is the proportion of trading volume 
that involved an Algorithmic trader either on the buy or the sell side. Liquidity Provision is the proportion of 
trading volume for which algorithmic traders provided liquidity, which is calculated based on the aggressiveness 
of the orders involved in the trade. All variables are standardized by stock and calculated using the previous 
hour’s data. The analysis is conducted using data from May, 2012. t-statistics are reported below coefficient 
estimates.  
  Participation  Liquidity Provision 

Α 0.05 0.05 0.05  0.02 0.03 0.03 
  10.00 10.12 9.88  4.96 5.70 5.93 
Extreme Conditions -0.21      -0.21     
  -3.84      -3.90     
               
Volatility   -0.09 -0.10    -0.01 0.01 
    -8.62 -8.46    -0.66 0.65 
Volatility*Volatility 
High     0.04 

 
    -0.05 

      2.00      -2.35 
Spreads   0.00 0.01    0.01 0.02 
    0.32 0.79    1.02 1.71 
Spreads*Spreads High     -0.05      -0.06 
      -1.70      -2.10 
Abs OIB   -0.23 -0.23    -0.24 -0.24 
    -22.90 -22.73    -24.49 -23.99 
Abs OIB*Abs OIB High     -0.24      -0.03 
      -1.81      -0.22 
Return   -0.03 -0.03    -0.02 -0.02 
    -2.07 -2.16    -1.68 -1.87 
Volume -0.01 -0.01 -0.01  0.05 0.02 0.02 
  -0.71 -0.68 -0.70  5.98 2.29 2.13 
Open -0.38 -0.39 -0.38  -0.24 -0.28 -0.28 
  -29.90 -30.23 -29.53  -19.04 -21.47 -21.34 
Close 0.01 0.01 0.01  0.05 0.05 0.05 
  0.68 0.72 0.83  4.80 4.68 4.56 
Adj. R-square 1.70% 2.52% 2.54%  0.75% 1.68% 1.70% 
# Observations 62985 62985 62985  62985 62985 62985 
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Table 8 – Algorithmic Trading by Market Conditions – Difference-in-Difference 
Multivariate Analysis 
This table presents regression analysis of algorithmic trades during periods of market stress- periods when 
market conditions (Eg: Volatility or Abs OIB) are abnormally high (greater than 2 std. deviations) for prolonged 
period of time Periods of market stress are identified as periods when market conditions (Eg: Volatility or CD 
Imbalance) are abnormally high (greater than 2 std. deviations) for prolonged period of time. For example 
Volatility High is a binary variable equal to 1 when 5-min Volatility (and/or CD Imbalance) over the past 1 hour 
has been greater than twice its standard deviation over the sample period. Extreme Conditions is a binary 
variable equal to 1 when either Volatility or Spreads or Absolute OIB over the past 1 hour has been greater than 
twice its standard deviation calculated over the sample period. Participation is the proportion of trading volume 
that involved an Algorithmic trader either on the buy or the sell side. ∆Participation is the difference between 
Participation of algorithmic and manual traders of the same client category in a 5-min interval. Liquidity 
Provision is the proportion of trading volume for which algorithmic traders provided liquidity, which is 
calculated based on the aggressiveness of the orders involved in the trade. ∆ Liquidity Provision is the difference 
between Liquidity Provision of algorithmic and manual traders of the same client category in a 5-min interval. 
All variables are standardized by stock and calculated using the previous hour’s data. The analysis is conducted 
using data from May, 2012. t-statistics are reported below coefficient estimates.   
 ∆Participation  ∆Liquidity Provision	
      		 	 		 		 		
α	 0.04 0.04 0.04  0.02 0.02 0.02 
  13.36 13.37 13.04  7.66 7.99 8.04 
    		 		 	 		 		 		
Extreme Conditions -0.10      -0.10     
  -3.28      -3.28     
Volatility   -0.05 -0.06    -0.01 -0.01 
    -7.57 -7.89    -1.51 -0.88 
Volatility*Volatility 
High     0.03 

 
    -0.01 

      2.75      -0.70 
Spreads   0.00 0.01    0.01 0.01 
    0.53 1.06    1.10 1.89 
Spreads*Spreads High     -0.04      -0.04 
      -2.19      -2.54 
Abs OIB   -0.11 -0.11    -0.09 -0.09 
    -18.63 -18.46    -15.69 -15.36 
Abs OIB*Abs OIB High     -0.24      -0.06 
      -3.05      -0.80 
Return   -0.02 -0.03    -0.02 -0.02 
    -3.14 -3.26    -2.79 -2.98 
Volume 0.00 0.00 0.00  0.05 0.04 0.04 
  -0.80 -0.58 -0.60  10.25 7.75 7.61 
Open -0.27 -0.28 -0.27  -0.18 -0.20 -0.20 
  -37.46 -37.20 -36.27  -25.11 -26.11 -25.71 
Close -0.01 -0.01 -0.01  0.02 0.02 0.02 
    		 		 	 		 		 		
Adj. R-square 0.87% 1.06% 1.07%  0.40% 0.52% 0.53% 
# Observations 188955 188955 188955  188955 188955 188955 
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Table 9 – Order Placements by Algorithmic Traders and Market Conditions – Univariate Analysis 
This table presents univariate analysis of algorithmic trades during periods of market stress- periods when market conditions (Eg: Volatility or Abs OIB) are abnormally high 

(greater than 2 std. deviations) for prolonged period of time. For example, a 5-minute period is classified as Volatility High when the 5-minute Volatility over the past 1 hour 

has been greater than twice its standard deviation over the sample period. A 5-minute interval is classified as Extreme when either Volatility or Spreads or Absolute OIB over 

the past 1 hour have been greater than twice their standard deviation calculated over the sample period. New Orders is the ratio of the number new orders placed by 

algorithmic traders and total number of new orders placed in a 5-minute period. Net New Orders is the ratio of net new orders (new orders minus cancelled orders) placed by 

algorithmic traders and total number of net new orders placed in a 5-minute period. Volume of New Orders is the ratio of the volume of new orders placed by algorithmic 

traders and total volume of new orders placed in a 5-minute period. Volume of Net New Orders is the ratio of the volume of net new orders (new orders minus cancelled 

orders) placed by algorithmic traders and total volume of new orders placed in a 5-minute period. The analysis is conducted using data from May, 2012. t-statistics are also 

reported.  

Market Conditions N New Orders Net New Orders  Volume of New Orders  
Volume of Net New 

Orders 
  N Relative Prices  

Extreme Conditions 347 39.09% 26.93% 41.18% 22.60%   330 3.63% 

Normal Conditions 69208 49.86% 41.95% 50.32% 42.05%   66639 2.80% 

Difference   -10.77% -15.02% -9.14% -19.45%     0.83% 

t-stat   -9.04 -5.25 -6.64 -7.89     0.33 

                  

Volatility High 201 40.90% 28.84% 39.82% 21.95%   201 3.90% 

Volatility Otherwise 69354 49.83% 41.91% 50.31% 42.01%   66768 2.81% 

Difference   -8.93% -13.07% -10.49% -20.06%     1.09% 

t-stat   5.71 3.48 5.80 6.94     -0.34 

                  

Spreads High 141 37.61% 24.40% 43.18% 22.42%   130 3.30% 

Spreads Otherwise 69414 49.83% 41.91% 50.29% 41.99%   66839 2.81% 

Difference   -12.22% -17.51% -7.11% -19.57%     0.49% 

t-stat   6.54 3.91 3.30 6.68     -0.92 

                  

OIB High 10 12.88% 11.36% 23.27% 26.15%   3 2.81% 

OIB Otherwise 69545 49.80% 41.87% 50.28% 41.94%   66966 0.84% 

Difference   -36.92% -30.51% -27.01% -15.79%     1.97% 

t-stat   -5.273 -5.07 -3.338 -1.17     3.25 
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Table 10 – Order Placements by Algorithmic Traders and Market Conditions – Difference-in-Difference Analysis 
This table presents a difference-in-difference analysis of algorithmic trades during periods of market stress- periods when market conditions (Eg: Volatility or Abs OIB) are 

abnormally high (greater than 2 std. deviations) for prolonged period of time. For example, a 5-minute period is classified as Volatility High when the 5-minute Volatility over 

the past 1 hour has been greater than twice its standard deviation over the sample period. A 5-minute interval is classified as Extreme when either Volatility or Spreads or 

Absolute OIB over the past 1 hour has been greater than twice its standard deviation calculated over the sample period. Traders classified as Client 1 and Client 3 are both 

customers of the exchange, but Client 3 traders employ their own Clearing Member –typically, entities that avail such a facility FIIs, Mutual Funds, NRIs, Domestic Body 

Corporates & Domestic Financial Institutions etc. Client 2 traders are member of the exchange. New Orders, for a class of traders, is the ratio of the number new orders 

placed by the corresponding class of traders and total number of new orders placed in a 5-minute period. Net New Orders, for a class of traders, is the ratio of net new orders 

(new orders minus cancelled orders) placed by the corresponding class of traders and the total number of net new orders placed in a 5-minute period. Volume of New Orders, 

for a class of traders, is the ratio of the volume of new orders placed by the corresponding class of traders and the total volume of new orders placed in a 5-minute period. 

Volume of Net New Orders, for a class of traders, is the ratio of the volume of net new orders (new orders minus cancelled orders) placed by the corresponding class of traders 

and the total volume of new orders placed in a 5-minute period. t-statistics are also reported.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 40 

Client Algo Market Conditions N New Orders Net New Orders  Volume of New Orders  
Volume of Net New 

Orders 
  N Relative Prices  

1 1 Extreme Conditions 347 8.00% 10.90% 4.40% 11.11%   156 0.26% 

1 1 Normal Conditions 61516 13.95% 21.61% 8.35% 29.25%   27423 6.65% 

    Difference   -5.95% -10.71% -3.95% -18.14%     -6.39% 

    t-stat   -6.53 -3.78 -5.32 -1.97     -2.97 

                      

1 0 Extreme Conditions 347 1.11% 1.36% 3.21% 6.60%       

1 0 Normal Conditions 61516 1.82% 3.11% 4.06% 13.44%       

    Difference   -0.71% -1.75% -0.85% -6.84%       

    t-stat   -2.97 -3.71 -7.73 -0.70       

    Difference-in-Difference -5.24% -8.96% -3.10% -11.30%       

    t-stat   -8.27 -9.60 -5.21 -3.65       

                      

2 1 Extreme Conditions 347 24.86% 11.63% 32.08% 8.18%   322 1.23% 

2 1 Normal Conditions 61516 29.14% 15.35% 36.94% 8.40%   56432 1.48% 

    Difference   -4.28% -3.72% -4.86% -0.22%     -0.25% 

    t-stat   -3.90 -3.42 -3.62 -0.01     -0.06 

                      

2 0 Extreme Conditions 347 17.84% 13.30% 21.63% 16.76%       

2 0 Normal Conditions 61516 19.39% 11.45% 22.56% 8.03%       

    Difference   -1.55% 1.85% -0.93% 8.73%       

    t-stat   -1.91  1.39 -0.89 0.34       

    Difference-in-Difference -2.73% -5.57% -3.93% -8.95%       

    t-stat   -2.29 -5.31 -2.70 -2.75       

                      

3 1 Extreme Conditions 347 6.17% 3.80% 4.63% 3.76%   310 5.84% 

3 1 Normal Conditions 61516 6.22% 3.83% 4.70% 4.15%   53413 8.47% 

    Difference   -0.05% -0.03% -0.07% -0.39%     -2.63% 

    t-stat   -0.09 -0.06 -0.15 -0.18      -0.76 

                      

3 0 Extreme Conditions 347 42.02% 59.01% 34.05% 53.60%       

3 0 Normal Conditions 61516 29.45% 44.66% 23.37% 36.73%       

    Difference   12.57% 14.35% 10.68% 16.87%       

    t-stat   11.70 6.28 8.42 0.95       

    Difference-in-Difference -12.62% -14.38% -10.75% -17.26%       

    t-stat   -9.81 -13.14 -7.29 -7.46       
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Table 11 – Informativeness of Algorithmic Trading by Market Conditions – 

Univariate Analysis 
This table presents univariate analysis of the informativeness of algorithmic trades during periods of market 

stress- periods when market conditions (Eg: Volatility or Abs OIB) are abnormally high (greater than 2 std. 

deviations) for prolonged period of time. For example, a 5-minute period is classified as Volatility High 

when the 5-minute Volatility over the past 1 hour has been greater than twice its standard deviation over the 

sample period. A 5-minute interval is classified as Extreme when either Volatility or Spreads or Absolute 

OIB over the past 1 hour has been greater than twice its standard deviation calculated over the sample 

period.  For buys, price change is measured as the midquote prevailing 5 min (15, 30 or 60 min) after 

transaction less the buy price, expressed as a ratio of the buy price. For sells, price change is measured as 

the sell price less the midquote 5 min (15, 30 or 60 min) after order submission, expressed as a ratio of the 

sell price. Informativeness for a trader category during a 5-minte interval is calculated as the volume 

weighted average of all price changes relating to the trader category during the 5-minutes interval, 

expressed in basis points. Algo is a binary variable that identifies algorithmic messages. The analysis is 

conducted using data from May, 2012. t-statistics are also reported.  

Panel A: 1-Hour Persistence 

Market Conditions Algo N 
Informativeness 

5 mins 15 mins 30 mins 60 mins 

Extreme Conditions 
1 347 0.43 -2.10 -2.10 -1.30 

0 347 6.99 8.19 8.21 7.86 

    Difference -6.56 -10.29 -10.31 -9.16 

    t-stat -0.77 -1.22 -1.21 -1.07 

              

Normal Conditions 
1 62638 1.20 1.49 1.90 2.00 

0 62638 -0.02 -0.20 -0.50 -0.60 

    Difference 1.22 1.69 2.40 2.60 

 

  t-stat 4.00 5.44 7.67 8.08 

Difference-in-Difference   -7.78 -11.98 -12.71 -11.76 

t-stat     -11.19 -17.11 -17.93 -16.51 

  

 Panel B: 30-Minute Persistence 

Market Conditions Algo N 
Informativeness 

5 mins 15 mins 30 mins 60 mins 

Extreme Conditions 
1 960 1.58 2.45 3.32 2.65 

0 960 5.62 5.07 4.53 4.93 

    Difference -4.04 -2.62 -1.21 -2.28 

    t-stat -0.72 -0.47 -0.22 -0.40 

              

Normal Conditions 
1 62022 1.33 1.56 1.94 2.06 

0 62022 -0.20 -0.40 -0.60 -0.70 

    Difference 1.53 1.96 2.54 2.76 

 

  t-stat 2.65 3.37 4.40 4.83 

Difference-in-Difference   -5.57 -4.58 -3.75 -5.04 

t-stat     -6.26 -5.14 -4.19 -5.71 
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Panel C: 15-Minute Persistence 

Market Conditions Algo N 
Informativeness 

5 mins 15 mins 30 mins 60 mins 

Extreme Conditions 
1 1790 3.76 4.02 4.78 4.19 

0 1790 -2.7 -2.7 -3.1 -2.7 

    Difference 6.46 6.72 7.88 6.89 

    t-stat 1.38 2.32 1.67 1.48 

              

Normal Conditions 
1 61192 1.13 1.38 1.76 1.90 

0 61192 0.33 0.10 -0.10 -0.30 

    Difference 0.80 1.28 1.86 2.20 

 

  t-stat 1.47 2.32 3.36 3.88 

Difference-in-Difference   5.66 5.44 6.02 4.69 

t-stat     5.98 5.74 6.25 5.01 

 

 
Panel D: 5-Minute Persistence 

Market Conditions Algo N 
Informativeness 

5 mins 15 mins 30 mins 60 mins 

Extreme Conditions 
1 5128 1.27 1.52 1.95 1.91 

0 5128 -2.9 -3 -3.2 -3.2 

    Difference 4.17 4.52 5.15 5.11 

    t-stat 1.79 1.93 2.19 2.19 

              

Normal Conditions 
1 57854 1.35 1.60 2.00 2.11 

0 57854 0.59 0.36 0.13 0.01 

    Difference 0.76 1.24 1.87 2.10 

 

  t-stat 1.35 2.17 3.24 3.65 

Difference-in-Difference   3.41 3.28 3.28 3.01 

t-stat     3.93 3.81 3.76 3.44 
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Table 12 – Informativeness of Algorithmic Trading by Market Conditions – 

Difference-in-Difference Analysis  

This table presents univariate analysis of the informativeness of algorithmic trades during periods of market 

stress- periods when market conditions (Eg: Volatility or Abs OIB) are abnormally high (greater than 2 std. 

deviations) for prolonged period of time. For example, a 5-minute period is classified as Volatility High 

when the 5-minute Volatility over the past 1 hour has been greater than twice its standard deviation over the 

sample period. A 5-minute interval is classified as Extreme when either Volatility or Spreads or Absolute 

OIB over the past 1 hour has been greater than twice its standard deviation calculated over the sample 

period.  For buys, price change is measured as the midquote prevailing 5 min (15, 30 or 60 min) after 

transaction less the buy price, expressed as a ratio of the buy price. For sells, price change is measured as 

the sell price less the midquote 5 min (15, 30 or 60 min) after order submission, expressed as a ratio of the 

sell price. Informativeness for a trader category during a 5-minte interval is calculated as the volume 

weighted average of all price changes relating to the trader category during the 5-minutes interval, 

expressed in basis points. Traders classified as Client 1 and Client 3 are both customers of the exchange, 

but Client 3 traders employ their own Clearing Member –typically, entities that avail such a facility FIIs, 

Mutual Funds, NRIs, Domestic Body Corporates & Domestic Financial Institutions etc. Client 2 traders are 

member of the exchange.  Algo is a binary variable that identifies algorithmic messages. The analysis is 

conducted using data from May, 2012. t-statistics are also reported.  

Market Conditions Client Algo 
N Informativeness 

  5 mins 60 mins 

Extreme Conditions 
1 1 

347 
2.22 -2.00 

1 0 3.72 6.79 

      Difference -1.50 -8.79 

      t-stat -0.42 -1.75 

            

Normal Conditions 
1 1 

62638 
0.90 1.85 

1 0 -1.80 -0.60 

      Difference 2.70 2.45 

 

    t-stat 6.47 5.23 

Difference-in-Difference     -4.20 -11.24 

t-stat       -8.65 -19.17 

Extreme Conditions 
3 1 

347 
-0.70 -2.10 

3 0 -1.90 -1.30 

      Difference 1.20 -0.80 

      t-stat 0.56 -0.25 

            

Normal Conditions 
3 1 

62638 
-0.40 -2.00 

3 0 -1.10 -2.40 

      Difference 0.70 0.40 

 

    t-stat 0.76 0.46 

Difference-in-Difference     0.50 -1.20 

t-stat       0.59 -1.34 

Extreme Conditions 
2 1 

347 
-3.20 -3.30 

2 0 -3.70 -5.90 

      Difference 0.50 2.60 

      t-stat 0.34 1.02 

            

Normal Conditions 
2 1 

62638 
-0.20 -0.30 

2 0 2.16 0.62 

      Difference -2.36 -0.92 

 

    t-stat -2.41 -0.89 

Difference-in-Difference     2.86 3.52 

t-stat       2.88 3.33 
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Table 13 – Probability of Extreme events and Algorithmic trading 

This table presents estimates from Logit models of extreme events. A 5-minute interval is classified as 

Extreme event when either Volatility or Spreads or Absolute OIB over the past 1 hour has been greater than 

twice its standard deviation calculated over the sample period.  Participation is the proportion of trading 

volume that involved an Algorithmic trader either on the buy or the sell side. Liquidity Provision is the 

proportion of trading volume for which algorithmic traders provided liquidity, which is calculated based on 

the aggressiveness of the orders involved in the trade. Open is a binary variable equal one during the first 

hour of trading. Close is a binary variable equal one during the last hour of trading. All variables are 

standardized by stock and calculated using the previous hour’s data. The analysis is conducted using data 

from May, 2012. Two tailed p-values are also reported. 

  1 2 3 4 5 6 

Α -5.38 -5.83 -8.60 -5.26 -5.81 -8.57 

  <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

              

Participation -0.91 -0.62 -0.33       

  <0.01 <0.01 0.01       

Liquidity Provision       -0.54 -0.57 -0.36 

        <0.01 <0.01 0.01 

Volatility     3.53     3.53 

      <0.01     <0.01 

Spreads     2.66     2.66 

      <0.01     <0.01 

Abs OIB     1.23     1.18 

      <0.01     <0.01 

Return   -0.36 -0.12   -0.38 -0.12 

    <0.01 0.21   <0.01 0.19 

Volume   1.06 0.31   1.09 0.32 

    <0.01 <0.01   <0.01 <0.01 

Close   0.45 0.50   0.49 0.51 

    <0.01 <0.01   <0.01 <0.01 

Open   -0.73 -0.05   -0.77 -0.06 

    <0.01 0.59   <0.01 0.46 

Likelihood Ratio <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

# Observations 62985 62985 62985 62985 62985 62985 
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Table 14 – Algorithmic Trading by Market Conditions – Contagion Analysis 
This table presents contagion analysis of algorithmic trades during periods of market stress- periods when 

market conditions (Eg: Volatility or Abs OIB) are abnormally high (greater than 2 std. deviations) for 

prolonged period of time. For example, a 5-minute period is classified as Volatility High when the 5-minute 

Volatility over the past 1 hour has been greater than twice its standard deviation over the sample period. A 

5-minute interval is classified as Extreme when either Volatility or Spreads or Absolute OIB over the past 1 

hour has been greater than twice its standard deviation calculated over the sample period. A 5-minute 

interval, for stock i, is classified as Extreme-Contagion when any stock j <> i has an Extreme events during 

the same 5-minute interval, but stock i does not. Volatility High-Contagion, Spreads High-Contagion and 

OIB High-Contagion are defined similarly. Algo is a binary variable that identifies algorithmic messages. 

Participation is the proportion of trading volume that involved an Algorithmic trader either on the buy or 

the sell side. Liquidity Provision is the proportion of trading volume for which algorithmic traders provided 

liquidity, which is calculated based on the aggressiveness of the orders involved in the trade. The analysis 

is conducted using data from May, 2012. t-statistics are also reported.  

 

Market Conditions N Participation Liquidity Provision 

Extreme-Contagion  10218 35.42% 15.40% 

Normal Conditions 52767 38.23% 16.19% 

Difference   -2.81% -0.79% 

t-stat   -13.57 -6.77 

        

Volatility High-Contagion 6894 36.55% 15.79% 

Volatility Otherwise 56091 37.92% 16.10% 

Difference   -1.37% -0.31% 

t-stat   -5.63 -2.25 

        

Spreads High-Contagion 3812 33.19% 14.62% 

Spreads Otherwise 59173 38.07% 16.16% 

Difference   -4.88% -1.54% 

t-stat   -15.29 -8.52 

        

OIB High-Contagion 152 33.75% 13.65% 

OIB Otherwise 62833 37.78% 16.07% 

Difference   -4.03% -2.42% 

t-stat   -2.59 -2.75 

 
 




