Use of Control Variate Technique: Structured Credit Index Products

Viral Acharya & Stephen M Schaefer NYU-Stern and London Business School, London Business School

Credit Risk Elective Spring 2009

Estimated Tranche Spreads – Base Case

Number of credits (N)	125
CDS Spread (uniform, basis points)	100
Maturity (years)	3
Riskless rate (rf)	0.05
LGD (percentage)	0.6
Change in CDS for delta basis points (del_CDS)	20
Number of trials in MC	500,000

Attachment	Detachment	S Corr = 0.25	p r e Corr = 0.5
0 %	3%	1705	1176
3%	7%	609	542
7%	10%	247	324
10%	15%	102	201
15%	30%	16	76
30%	100%	0.1	3.0

Calculating the Delta

Change in MTM of Tranche = (S' - S) \$250 $(\beta_2 - \beta_1) \frac{1}{r}(1 e^{-3r})$

Change in MTM of CDS (20 bp shift) = (120 bp - 100 bp) $\frac{\$250}{125} \frac{1}{r}(1 - e^{-3r})$

 $\frac{\text{Delta of Tranche}}{\text{per 1 bp shift}} = \frac{\text{Change in Mark-to-Market of Tranche}}{\text{Change in Mark-to-Market of Credit}}$

=125
$$(\beta_2 -\beta_1) \frac{(S'-S)}{20bp}$$

Note: *S* is the tranche spread in the base case and *S*' is the spread after a 20 bp shift in the CDS spread on one credit

Delta

		D	e Ita
Attachment	Detachment	<i>Corr</i> = <i>0.25</i>	<i>Corr</i> = <i>0.5</i>
0 %	3%	28.9	23.4
3%	7%	30.5	21.3
7%	10%	12.3	10.9
10%	15%	10.0	13.4
15%	30%	6.1	16.5
30%	100%	0.2	4.1

How Accurate is the Estimated Spread?

Impact of Error in Spread on Accuracy of the delta *Example – Equity Tranche*

Suppose *spreads* are measured with an *error* of ε and that we measure the spreads *independently* (no control variate):

For tranche spread:
$$\delta = 125 - (\beta_2 \ \beta_1) \frac{(S' - S)}{20bp} \ 0.1875 \ (S' \ S)$$

 $\hat{S} = S + \varepsilon \quad \hat{S}' = S' + \varepsilon' \quad (S: \text{ true value; } \hat{S}: \text{ estimate})$
True delta: $\delta = 0.1875 - (S' \ S)$
estimated delta: $\hat{\delta} = 0.1875 - (\hat{S}' \ \hat{S})$
Error in delta: $\hat{\delta} - \delta = 0.1875 \quad (\varepsilon' - \varepsilon)$
Variance $(\hat{\delta}) = 0.1875^2 \quad [Var(\varepsilon') + Var(\varepsilon) - 2Cov(\varepsilon', \varepsilon)]$
 $= 0.1875^2 \quad 2 \quad Var(\varepsilon) \quad (1 \quad \rho_{\varepsilon}), \quad \rho_{\varepsilon} = \text{corr } \varepsilon', \varepsilon)$

Impact of Error in Spread on Accuracy of the delta, cntd. Example – *Equity Tranche*

• If the MC trials for the calculation of S' and S are independent then the correlation ρ_{ε} between ε ' and ε is zero and:

Variance $(\hat{\delta}) = 0.1875^2$ 2 $Var(\varepsilon) = 2.06$, $\sigma_{\varepsilon} = 5.42$

Std Dev(δ) = 1.42 (i.e., 142%) <<<when actual value of delta = 29%!!!

Estimates of Delta from Independent Estimates of the Spread are Highly Inaccurate

	Tranche					
	0-3	3-7	7-10	10-15	15-30	30-100
Delta (%)	2	8 30.5 9	12.3	10.0	6.1	0.2
			No contr	ol Variate		
Width	3%	4%	3%	5%	15%	70%
Multiplier	0.1875	0.2500	0.1875	0.3125	0.9375	4.3750
SD Spread (N = 50,000)	5.42	4.74	3.41	2.23	0.72	0.02
Predicted SD Delta (%)	143.6	167.6	90.5	98.6	95.6	14.5
Ratio SD/Level	5.0	5.5	7.4	9.9	15.7	72.4

• With independent estimates of the spread, the estimates of delta have standard errors that are between 5 and 70 times as large as delta itself

Brute Force: More Trials in the MC Simulation?

- The true delta for the equity tranche is about 29%
 - ✓ suppose we would like to measure this with a standard error of, say, 2%
- With independent MC estimates and 50,000 trials the standard error is around 142% with, around 70 times too large
- To improve the standard error by a factor of 70 would mean increasing the number of trials by a factor of (approximately) $70^2 = 4900$, i.e., from 50,000 trials to 245,000,000!!!

A better way

• To reduce the error, we need to make the error in the spread in (a) the base case and (b) the "shifted" case *positively correlated*.

Variance $(\hat{\delta}) = 0.1875^2$ 2 $Var(\varepsilon)$ $(1 \ \rho), \ \rho = \operatorname{corr} \varepsilon(\varepsilon)$

• To achieve this we use the *same set of random variables* to calculate the spread in both the base case and the "shifted" case

A Better Way

- Table shows error in the equity tranche spread estimate without and with control variate
- *With control variate*, error has a standard deviation that is 100 times smaller!

	Without Control Variate			With Control Variate			
	base	w. shift	difference	base	w. shift	difference	
1	-1.24	-4.13	2.90	-11.01	-9.51	-1.50	
2	2.96	5.56	-2.60	-5.31	-3.71	-1.60	
3	-3.74	9.96	-13.70	4.89	6.49	-1.60	
4	10.17	-3.13	13.30	-7.91	-6.41	-1.50	
5	-2.34	-0.74	-1.60	-1.11	0.49	-1.60	
6	-5.24	4.96	-10.20	3.89	5.29	-1.40	
7	-7.54	17.26	-24.80	6.19	7.59	-1.40	
8	3.66	0.37	3.30	-2.31	-0.71	-1.60	
9	0.06	-10.94	11.00	-0.11	1.39	-1.50	
10	6.96	-10.14	17.10	8.99	10.39	-1.40	
11	6.26	-1.63	7.90	-6.01	-4.41	-1.60	
12	-8.54	8.16	-16.70	-3.31	-1.81	-1.50	
13	1.96	0.26	1.70	-2.91	-1.41	-1.50	
14	0.66	1.16	-0.50	1.39	2.89	-1.50	
15	1.76	-3.13	4.90	6.29	7.89	-1.60	
16	6.06	-3.74	9.80	5.99	7.49	-1.50	
17	-2.63	0.16	-2.80	-3.41	-1.71	-1.70	
18	-4.54	3.56	-8.10	-5.61	-4.31	-1.30	
19	-6.54	-7.13	0.60	-0.01	1.69	-1.70	
20	-1.44	-3.54	2.10	-3.91	-2.41	-1.50	
Std. Dev	5.17	6.78	10.43	5.41	5.40	0.10	

Spread Estimates with and Without Control Variate

• Estimating delta as equivalent to estimating the difference between S' and S

$$\hat{\delta} = 0.1875 \quad (\hat{S}' - \hat{S}) \quad \hat{S} = S + \varepsilon \quad \hat{S}' = S' + \varepsilon'$$

Estimates of delta without and with control variate technique (20 estimates, 50,000 trials each)

Without Control Variate

With Control Variate

Use of Control Variate Technique Improves Precision of Delta Substantially

	Tranche					
	0-3	3-7	7-10	10-15	15-30	30-100
Delta (%)	28	. 9 0.5	12.3	10.0	6.1	0.2
	No control Variate					
Width	3%	4%	3%	5%	15%	70%
Multiplier	0.1875	0.2500	0.1875	0.3125	0.9375	4.3750
SD Spread (N = 50,000)	5.42	4.74	3.41	2.23	0.72	0.02
Predicted SD Delta (%)	143.6	167.6	90.5	98.6	95.6	14.5
Ratio SD/Level	5.0	5.5	7.4	9.9	15.7	72.4

Use of Control Variate Technique Improves Precision of Delta Substantially

	Tranche					
	0-3	3-7	7-10	10-15	15-30	30-100
Delta (%)	28.9	30.5	12.3	10.0	6.1	0.2
			No contro	ol Variate		
Width	3%	4%	3%	5%	15%	70%
Multiplier	0.1875	0.2500	0.1875	0.3125	0.9375	4.3750
SD Spread (N = 50,000)	5.42	4.74	3.41	2.23	0.72	0.02
Predicted SD Delta (%)	143.6	167.6	90.5	98.6	95.6	14.5
Ratio SD/Level	5.0	5.5	7.4	9.9	15.7	72.4
	With control Variate					
SD Spread difference	0.10	0.08	0.06	0.04	0.01	0.00
Predicted SD Delta (%)	1.91	2.05	1.10	1.29	0.87	0.27
Predicted Ratio SD/Level	0.07	0.07	0.09	0.13	0.14	1.37
Actual Ratio SD/Level	0.05	0.07	0.09	0.13	0.15	1.02