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Binomial with Merton Model 

• Important method for calculating distribution of 
loan losses:
 widely used in banking
 used by Basel II regulations to set bank capital 

requirements

• Linked to distance-to-default analysis
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Mixed Binomial: Using Merton’s Models as 
Mixing Distribution

• In Merton model value of risky debt depends on firm value 
and default risk is correlated because firm values are 
correlated (e.g., via common dependence on market factor).

• Value of firm i at time T:

• We will assume that correlation between firm values 
arises because of correlation between surprise in individual 
firm value (ε ι ) and market factor (m)
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Mixed Binomial: Using Merton’s Models as 
Mixing Distribution

• Suppose correlation between each firm’s value and the 
market factor is the same and equal to sqrt(ρ ) .

• This means that we may model correlation between the ε’s as 
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• Where m and vi are independent N(0,1) random variables 
and ρ  is common to all firms 

• Notice that if vi ~ N(0,1) and m ~ N(0,1) then ε i ~ N(0,1) 
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Structural Approach, contd. 

• From our analysis of distance-to-default, we know that 
under the Merton Model a firm defaults when:
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• The unconditional probability of default, p, is therefore:
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• In this model we assume that the default probability, p, is 
constant across firms
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Structural Approach to Correlation – the Idea

• Working out the distribution of portfolio losses 
directly when the ε’s are correlated is not easy

• But, if we work out the distribution conditional 
on the market shock, m, then we can exploit the 
fact that the remaining shocks are independent and 
work out the portfolio loss distribution
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Structural Approach, contd.

• Default occurs when:
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• The shock to the return, ε i, is related to the common and 
idiosyncratic shocks by:

1i im vε ρ ρ= + −
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The Default Condition

• A large value of m means a “good” shock to the market 
(high asset values)

• The larger the value of m the more negative the 
idiosyncratic shock, vi, has to be to trigger default

• The higher the correlation, ρ , between the firm shocks, 
the larger the impact of m on the critical value of vi.
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Structural Approach, contd. 

• Conditional on the realisation of the common shock, m, the 
probability of default is therefore:
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The relation between m and θ
• For a given market shock, m, θ  gives the conditional 

probability of default on an individual loan

0.00

0.05

0.10

0.15

0.20

0.25

-4 -3 -2 -1 0 1 2 3 4

market shock (m)

T
h

e
ta

 (
c

o
n

d
it

io
n

a
l d

e
fa

u
lt

 p
ro

b
)

High Corr   p =  6.0%    rho =  25.0%

Low Corr   p =  6.0%    rho =  5.0%



Acharya & Schaefer: Merton model approach for correlation products 11

Implications of Conditional Independence 

• For a given value of m, as the number of loans in the portfolio → 
∞ , the proportion of loans in the portfolio that default converges to 
the probability θ

• The probability that the loan-loss proportion, L, is < θ   is therefore: 
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Loan Loss Distribution – Structural Model 

• This result gives the distribution of the fraction of loans that 
default in a well diversified homogeneous portfolio where the 
correlation in default comes from dependence on a common 
factor

• Homogeneity means that each loan has:
 the same default probability, p

 (implicitly) the same loss-given-default
 the same correlation, ρ , across different loans

• The distribution has two parameters
 default probability, p
 correlation, ρ
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Loan Loss Distribution with p = 1% and ρ  = 12% and 
0.6%
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Example of Vasicek formula Applied to Bank 
Portfolio

Source: Vasicek
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