Merton-model Approach to Valuing Correlation Products

Viral Acharya & Stephen M Schaefer

NYU-Stern and London Business School, London Business School

Credit Risk Elective Spring 2009

1

Acharya & Schaefer: Merton model approach for correlation products

Binomial with Merton Model

- Important method for calculating distribution of loan losses:
 - ✓ widely used in banking
 - ✓ used by Basel II regulations to set bank capital requirements
- Linked to distance-to-default analysis

Mixed Binomial: Using Merton's Models as Mixing Distribution

- In Merton model value of risky debt depends on *firm value* and *default risk is correlated because firm values are correlated* (e.g., via common dependence on *market factor*).
- Value of firm *i* at time *T*:

$$V_{T,i} = V_i \exp(((\mu_i - (1/2)\sigma_{V,i}^2)T + (\mu_{V,i}^2)T + (\mu_{V,$$

We will assume that *correlation between firm values* arises because of correlation between surprise in individual firm value (ε_i) and *market factor (m)*

Mixed Binomial: Using Merton's Models as Mixing Distribution

- Suppose correlation between each firm's value and the market factor is the same and equal to $sqrt(\rho)$.
- This means that we may model correlation between the ε 's as

$$\varepsilon_i = \sqrt{\rho}m + \sqrt{1-\rho}v_i, \quad i = 1, \hat{W}N$$

and

 $corr(\varepsilon_i, \varepsilon_j) = \rho$

- Where *m* and v_i are independent N(0, 1) random variables and ρ is common to all firms
- Notice that if $v_i \sim N(0, 1)$ and $m \sim N(0, 1)$ then $\varepsilon_i \sim N(0, 1)$

Structural Approach, contd.

• From our analysis of *distance-to-default*, we know that under the Merton Model a firm defaults when:

$$\varepsilon_i - R_{D,i} \quad (\mu_i \quad \frac{1}{2}\sigma_{V,i}^2)T \quad /\sigma_{V,i}\sqrt{T} \text{ where } R_{D,i} \quad \ln(B_i/V_i)$$

• The *unconditional* probability of default, *p*, is therefore:

$$p < \operatorname{Prob} \varepsilon_{i} \quad \frac{R_{D,i} - (\mu_{i} - \frac{1}{2}\sigma_{V,i}^{2})}{\sigma_{V,i}\sqrt{T}} = N \quad \frac{R_{D} - (\mu_{i} - \frac{1}{2}\sigma_{V,i}^{2})}{\sigma_{i}\sqrt{T}}$$

• In this model we assume that the *default probability*, *p*, is *constant across firms*

Structural Approach to Correlation – the Idea

- Working out the distribution of portfolio losses directly when the ε 's are correlated is not easy
- But, if we work out the *distribution conditional on the market shock*, *m*, then we can exploit the fact that the remaining shocks are independent and work out the portfolio loss distribution

Structural Approach, contd.

• The shock to the return, ε_i , is related to the common and idiosyncratic shocks by:

$$\varepsilon_i = \sqrt{\rho}m + \sqrt{1-\rho}v_i$$

• Default occurs when:

$$\varepsilon_{i} = \sqrt{\rho}m + \sqrt{1 - \rho}v_{i} < \frac{R_{D,i} - (\mu_{i} - \frac{1}{2}\sigma_{V,i}^{2})}{\sigma_{V,i}\sqrt{T}} = N^{-1}(p)$$

or

$$v_i < \frac{N^{-1}(p) - \sqrt{\rho}m}{\sqrt{1 - \rho}}$$

The Default Condition

$$v_i < \frac{N^{-1}(p) - \sqrt{\rho}m}{\sqrt{1 - \rho}}$$

- A large value of *m* means a "good" shock to the market (high asset values)
- The larger the value of m the more negative the idiosyncratic shock, v_i , has to be to trigger default
- The higher the correlation, ρ , between the firm shocks, the larger the impact of *m* on the critical value of v_i .

Structural Approach, contd.

• Conditional on the realisation of the common shock, *m*, the probability of default is therefore:

Prob(default
$$|m\rangle$$
) = Prob $v_i < \frac{N^{-1}(p) - \sqrt{\rho}m}{\sqrt{1 - \rho}}$
= $N \frac{N^{-1}(p) - \sqrt{\rho}m}{\sqrt{1 - \rho}} = \theta(m)$, say
and therfore = $\frac{N^{-1}(p) - \sqrt{\rho}m}{\sqrt{1 - \rho}} = N^{-1}(\theta)$

Acharya & Schaefer: Merton model approach for correlation products

The relation between m and θ

• For a given market shock, m, θ gives the conditional probability of default on an individual loan

Acharya & Schaefer: Merton model approach for correlation products

Implications of Conditional Independence

- For a given value of *m*, as the number of loans in the portfolio →
 ∞, the *proportion* of loans in the portfolio that default converges *to the probability* θ
- The probability that the loan-loss proportion, *L*, is $< \theta$ is therefore: Prob(*L* = θ) Prob $\frac{N^{-1}(p) - \sqrt{\rho}m}{\sqrt{1 - \rho}} N^{-1}(\theta)$ = Prob $m \frac{1}{\sqrt{\rho}} \left(N^{-1}(p) - N^{-1}(\theta)\sqrt{1 - \rho} \right)$

= Prob
$$m - \frac{1}{\sqrt{\rho}} \left(\sqrt{1 \rho} N^{-1}(\theta) N^{-1}(p) \right)$$

= N
$$\frac{1}{\sqrt{\rho}} \left(\sqrt{1-\rho} N^{-1}(\theta) - N^{-1}(p) \right)$$

Acharya & Schaefer: Merton model approach for correlation products

Loan Loss Distribution – Structural Model

$$\operatorname{Prob}(L = \theta) \quad N \quad \frac{1}{\sqrt{\rho}} \left(\sqrt{1 \rho} N^{-1}(\theta) N^{-1}(p) \right)$$

- This result gives the distribution of the *fraction of loans that default* in a *well diversified homogeneous portfolio* where the correlation in default comes from dependence on a *common factor*
- *Homogeneity* means that each loan has:
 - ✓ the *same default probability*, *p*
 - ✓ (implicitly) the *same loss-given-default*
 - ✓ the *same correlation*, ρ , across different loans
- The distribution has *two parameters*
 - ✓ default probability, p
 - ✓ correlation, ρ

Loan Loss Distribution with p = 1% and $\rho = 12\%$ and 0.6%

Example of Vasicek formula Applied to Bank Portfolio

Acharya & Schaefer: Merton model approach for correlation products