Correlation - Modelling

Viral Acharya & Stephen M Schaefer

NYU-Stern and London Business School, London Business School

Credit Risk Elective Spring 2009

Valuation of CDO Tranches

Tranched 125 Name DJ.CDX.NA.IG Series 5 (Illustrative Pricing 16 Feb, 2006)

Tranche	Estimated Rating	Market Quote (bp)
15% - 30%	AAA (junior super senior)	4/5
10% - 15%	AAA (junior super senior)	12/13
7% - 10%	AAA (junior super senior)	26/26
3% - 7%	BBB-	108/110
0% - 3%	Not rated	35.4% / 35.9% + 500 bp

Source: Morgan Stanley

Attachment and Detachment Points

- Each tranche is defined in terms of its *attachment* (β_A) and *detachment* (β_D) points
 - ✓ these are measured in terms of losses as percent of total face value of basket
- The *attachment* point defines the limit *below which* the tranche bears *none* of the *loss*
- The *detachment* point defines the limit *above which* the tranche loss *does not increase*

Tranche Loss Payments

• If total losses (as a percent of the total nominal portfolio value) are *L*, then for a tranche with attachment and detachment points β_{A} and β_{D} the tranche loss payment is:

Tranche Loss Payments: Equity and Senior Tranche

Equity Tranche

Senior Tranche

Equity tranche loss is *concave* in portfolio loss: expected loss on tranche *decreases* (and *value of tranche increases*) with variance of portfolio loss

 Senior tranche loss is convex in portfolio loss: expected loss on tranche increases (and value of tranche decreases) with variance of portfolio loss

Effect of Correlation on Loss Distribution and Tranche Values

	Equity	Mezz	Senior	Total*	
Attachment	0%	3%	7%	0%	
Detachment	3%	7%	100%	100%	
Correlation	rrelation Expected Loss				
5%	2.94%	2.39%	0.72%	6.0%	
25%	2.29%	1.64%	2.12%	6.0%	

Valuation Method: the Idea

- *Three* steps:
 - ✓ valuation of the *protection* leg
 - ✓ valuation of the *premium* leg
 - ✓ Calculation of tranche *running spread* as the value that equates the value of the premium and protection legs.

Protection Leg Valuation

- Need to calculate distribution of portfolio losses:
 - ✓ Suppose portfolio contains *125 names*
 - Use Monte Carlo and (e.g.) Gaussian copula to compute drawings from the *joint distribution of default times* for 125 names
 - ✓ For each name (*k*) and each trial (*j*) in simulation, if simulated default time is $\tau_{k,j}$ calculate default event indicator $Def_{k,j}$:

$$Def_{k,j} = egin{array}{ccc} 0 & ext{no default} & au_{k,j} & ext{Maturity} \\ 1 & ext{default} & au_{k,j} < ext{Maturity} \end{array}$$

Protection Leg Valuation: Portfolio Loss Percentage

• Now, for each trial, *j*, count the number of defaults and divide by 125 to give the loss frequency (as a percentage) and then multiply by *LGD* to give the portfolio loss as a percentage of total portfolio face value:

$$L_{Port,j} = LGD \quad \frac{{}^{125}_{k=1}Def_{k,j}}{125} = LGD \quad \text{Loss Frequency (\%)}$$

Tranche Loss Percentage

- Using the relation between the tranche loss and the portfolio loss, compute the *tranche loss* $TL(L_{port,i})$ for this trial
- In other words, for tranche *m* and trial *j* compute:

$$TL_{m,j} = T_m(L_{Port,j})$$

• Where the function $T_m(L_{port,j})$ – *shown at right for the 3%*-7% *tranche* – gives the tranche loss as a function of the total portfolio loss for tranche *m* (both as a percent of total portfolio face value)

Value of Protection Leg

• To calculate the value of the protection leg $V_{m,Prot}$ (again as a percentage of the portfolio face value) we now simply calculate the discounted average value of the tranche loss over the *N* Monte-Carlo trials and discount this to the present^{*}:

$$V_{m,\text{Pr}ot} = e^{-rT} E \left(TL_{m,j} \right)$$
$$= e^{-rT} \frac{1}{N} \sum_{j=1}^{N} TL_{m,j}$$

**Note*: this assumes that all loss payments are made at maturity, *T*.

Calculating Tranche Losses from Total Portfolio Loss

- The calculation of tranche losses is illustrated in the three tranche example below:
 - ✓ from the portfolio loss the losses attributed to the three tranches are calculated by reference to the attachment and detachment points
 - ✓ the *expected value* of each tranche loss (previous slide) is then just the average of the column of losses for that tranche

Trial (j)	Portfolio	Equity	Mezz	Senior
	Loss	(0% - 3%)	(3%-7%)	(7%-100%)
1	5%	3%	2%	0%
2	1%	1%	0%	0%
3	2%	2%	0%	0%
4	10%	3%	4%	3%
	•••		••••	
Average				

Premium Leg Valuation

- We *assume* that *full premium* is received until *end of contract irrespective* of number of defaults.
 - ✓ in fact, if one (say) of the 125 names defaults, the premium received across all the tranches will be the reduced by 1/125th from that time.
- Ignoring this, the present value of the premium leg is simply the *value of an annuity* paying the spread, *S* up to contract maturity
- This is expressed as a *percentage of the total exposure* of the tranche which is the face value, *F*, multiplied by $(\beta_D D^2)^2$
 - β_{A}), the width of the tranche.

Calculating the Running Spread

• Finally, we equate the *PV* of the premium leg (expressed as a percentage of the face value of the portfolio) to the value of the protection leg :

$$V_{m,\operatorname{Pr}ot} = e^{-rT} \frac{1}{N} \quad {}^{N}_{j=1}TL_{m,j} = S \quad (\beta_D - \beta_A) \quad \frac{1}{r} (1 - \exp(\tau T))$$

• And so the running spread is given by:

$$S = \frac{e^{-rT} \frac{1}{N} \sum_{j=1}^{N} TL_{m,j}}{(\beta_D - \beta_A) \frac{1}{r} (1 - \exp(-rT))}$$

CDS Spreads on Indices and Tranches

Source: Amato and Gyntelberg, "CDS Index Tranches and the Pricing of Credit Risk Correlations", BIS Quarterly Review, March 2005

Correlation

Tranche Spreads and Correlation

Note: number of names = 100; CDS spread =100 bps; LGD = 0.6;

Dependence of Value of CDX Tranches on Correlation (Gaussian Copula)

Source: Amato and Gyntelberg, "CDS Index Tranches and the Pricing of Credit Risk Correlations", BIS Quarterly Review, March 2005

Implied Correlation 1/2

- In applications of the Black-Scholes model, there is most disagreement/uncertainty about the *volatility parameter*
 - ✓ Traders use *implied volatility* (volatility calculated from the option price) as a measure of the relative value of the option
- In the same way, for CDO tranches there is most disagreement/uncertainty about the pattern of *correlation*
- *Implied correlation* for CDO tranches is calculated in two main ways.

Implied Correlation 2/2

- *Implied* correlation
 - tranche specific correlation is the value that is consistent with the market spread of each tranche (*one at a time*)
- **Base** correlation
 - ✓ Consider a structure with detachment points of 3%, 10%, 30% etc.
 - ✓ The base correlation for the 10% detachment point is the correlation that is consistent with the *combined market values* of the 0%-3% and 3%-10% tranches.

Implied and Base Correlation

Source: Amato and Gyntelberg, "CDS Index Tranches and the Pricing of Credit Risk Correlations", BIS Quarterly Review, March 2005

Some Perspective on Correlation

- Need to remember that implied correlation is a single statistic that is supposed to the summarise 7750 different correlation parameters in a basket of 125 names (125x124/2)
- CDO value (and therefore correlation) coefficient also depends strongly on the *type of copula* being used
 - ✓ we have used Gaussian copula market standard for "communication" between market practitioners – but no empirical evidence that this is a good model.
- Pattern of default correlation major area for *future work*

Mark-to-Market (MTM) Impact of Spread Change

- Suppose protection *seller* via a particular tranche *receives* a spread of s₀
- Now suppose that market spread increases to s_1 :
 - ✓ if seller wishes to close out position s/he will have to purchase protection at s_1 , leading to a net *outflow* of $(s_1 - s_0)$
 - ✓ the *MTM impact* of this change is the *PV* of the change in the spread, i.e., the value of an *annuity* paying $(s_1 s_0)$
 - ✓ *value* to seller *increases* for *reduction in spread*

Delta and MTM Hedging

- Suppose we wish to *hedge a CDO* against changes in the CDS spreads of the underlying names
- The *delta* of a CDO measures the sensitivity of the value of a tranche to a change in the value of a particular given underlying CDS

Delta of Credit = $\frac{\text{Change in Mark-to-Market of Tranche}}{\text{Change in Mark-to-Market of Credit}}$

• Delta usually expressed as percentage of CDS position in underlying portfolio

Calculating Delta 1/2

- In principle calculating delta is straightforward: e.g., for *credit number i* (of the 125 underlying credits)
 - ✓ calculate the tranche spread using the existing CDS spreads (base case)
 - ✓ change the CDS spread of credit *i* by (say) 10 bps.
 - \checkmark calculate the MTM change in the value of
 - CDO tranche
 - ➤ the underlying CDS

and take the ratio

Calculating Delta 2/2

- *Problem*: Monte Carlo method produces values that are *subject to error*
 - Problematic to calculate change in value using *separate* MC runs – change will contain two (independent) errors and will tend to be inaccurate
- Solution:
 - compute both base case value and revised value using same set of random numbers (e.g., in same MC run)
 - ✓ MC errors in valuation will cancel out and estimate delta will be quite accurate (known as control variate technique)

Tranche Deltas

Delta as a Function of Subordination (Discrete CDO)

Delta as a Function of Subordination (Continuous CDO)

Source: Merrill Lynch

Source: Merrill Lynch

Summary

- Important new market for credit risk transfer
 - ✓ new indices high liquidity
 - \checkmark high rate of innovation in contract design
- Correlation a major area for future research