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Towards a default-risk adjusted discounting…

• Example: if risk neutral probability of default of a zero-
coupon bond promising $1 at maturity T is p(T) and if 
recovery in default is zero, then risk-neutral expected 
payoff at T is (1-p(T)) and current price is:

• If we substitute for p(T) we obtain first “hint” of useful trick 
and a link between term structure and intensity based models:

• In other words price is just face value ($1) discounted at the 
default risk adjusted rate of (r+λ) and the yield spread is just λ. 
However, this result depends strongly on recovery 
assumptions.
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Recovery of Market Value (RMV)
• Suppose that in default investors receive a constant 

fraction, R, of pre-default value of the defaultable bond

( (1 ) )( )r R T te λ− + − −

• Under this assumption we can show that the current value 
is simply the promised value discounted at the default-
adjusted rate r + (1-R)λ :  

• Why is this valuation formula a neat analytical result?
 Risk-less claims: Discount promised CFs at risk-free rate

 Risky claims: Discount promised CFs at default risk-adjusted rate

• First, we provide an informal proof. Next, we apply it.

• Default time = τ, Value of bond instant before default = V(τ-)
• Value of bond in default = R V(τ-), R = RMV fraction
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Informal Proof of RMV Result

• Suppose we are valuing a bond at time t, that λ is the risk 
neutral default intensity and R the recovery rate, then at 
time t+1 the investor receives:
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• The price at t is the risk neutral expected payoff discounted 
at r:
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• Solving and then letting ∆ t tend to zero gives:
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Implementing Intensity Models with 
Recovery of Market Value (RMV) as Default-

Adjusted Short Rate Tree
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Binomial Model with RMV Recovery: Duffie-Singleton 
Model – 2 Period Example – RMV Recovery

r = 7%

r = 9%

r = 13%

• Assume: risk-free short rate process (default-free 
yield curve):

• assume :
 recovery rate R =  0 . 3
 annual (risk-neutral) default probability λ = 0.05

• In practice: use prices of credit risky bonds to fit 
default intensity
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Duffie-Singleton Valuation

r = 7%

r = 13%

no default: payoff 
= 100, prob. = 0.95

default: payoff = 
0.3*100, prob. = 0.05

398.85
13.1

3005.010095.0
13 =•+•=V

r = 9%

no default: payoff 
= 100, prob. = 0.95

default: payoff = 
0.3*100, prob. = 0.05

532.88
09.1

3005.010095.0
9 =•+•=V

no default: payoff = 
85.398, prob. = 0.95

default: payoff = 
0.3*85.398, prob. = 
0.05

E(Payoff) = 
0.95*85.398+0.05*0.3*
85.398= 82.409

no default: payoff = 
88.532, prob. = 0.95

default: payoff = 0.3* 
88.532, prob. = 0.05

E(Payoff) = 0.95* 
88.532 +0.05*0.3* 
88.532 = 85.433

0.5 82.409 0.5 85.433
7 1.07

78.431

V
�+�

=

=

of 2-Period Bond
without default-
adjusted rates
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DS Model: 2 Period Example
Using Default Adjusted Rates

• Assuming RMV we can rewrite the calculations in 
terms of a default-adjusted rate:

riskless default adjusted
 rate rate
7% 10.881%
9% 12.953%
13% 17.098%
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Duffie-Singleton Valuation
of 2-Period Bond
with default-
adjusted rates

ˆ 1 0.8 8 1%r =

ˆ 17.098%r =

ˆ 12.953%r =
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Risk-neutral versus Actual Default 
Probabilities



Acharya and Schaefer: Other Reduced-form Models
11

Estimated 1-year default probabilities for 
Vintage Petroleum.

Source: Berndt, Douglas, Duffie, Ferguson and Schranz, “Measuring Default Risk Premia from Default Swap 
Rates and EDFs”, 2004 
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CDS Rates (approx. equal to spread) and Natural 
Default Probabilities 

100% loss rate

50% loss rate

Source: Berndt, Douglas, Duffie, Ferguson and Schranz, “Measuring Default Risk Premia from Default Swap 
Rates and EDFs”, 2004 
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What is going on?

• It is possible that there are large risk premia associated 
with default.

• But is also possible that credit spreads are influenced by 
other factors such as 
 Limited liquidity of corporate debt

 Institutional limitations on arbitrage between debt and equity

• It turns out that for some derivatives this will make little 
difference but for others it will be important
 GM and Ford downgrades of 2004-05
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Do Recovery Rate Assumptions Matter?
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How much difference do the recovery assumptions 
make?

• Recovery of market value leads to very convenient 
valuation formulae but may (or may not) be 
empirically realistic.

• How much difference does this assumption make?
• The jury is still out, but in many cases, the 

recovery assumption choice is second order to 
getting the likelihood of default right
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Effect of 
recovery 

Assumptions

Source: Duffie & Singleton
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