Information Flow Between Spot and Futures Market
- The Role of Algorithmic Traders

Manish K. Singh

Assistant Professor
Department of Management Studies (Economics)
Indian Institute of Technology Delhi

February 8, 2020
Summary

To establish the direction of information flow between future and spot market:

- single stocks (160), intra-day data (1 min and 5 min interval), order imbalance instead of prices

Key findings:

- temporal relationship between single stock future and spot market (futures market lead by a minute);
- information flow is primarily established through non-algorithmic traders;
- high-frequency algorithmic traders are not informed;
Suggestion: Methodology

Basic idea: To establish lead-lag relationship

1 Why order imbalances instead of returns? Some argument/theoretical underpinning will be nice.
 - I would suggest that if you have the data, do the analysis using returns and robustness checks using order imbalance.
 - If you still decide to use the proxy variable, then a subsection must be added to justify/establish its relevance.

2 Deviation from time-series analysis must be discussed in greater detail;

3 “In an ideal frictionless environment, price movements across markets should be contemporaneously correlated and not cross-correlated. A situation where one market assimilates information faster compared to the other gives rise to a lead-lag relationship between price movements.”
 - Cross-correlation is the first step for establishing lead-lag relationship;
 - I would suggest the author to explain/justify the use of panel data techniques used in the analysis.
My concerns: Methodology

Basic idea: To establish lead-lag relationship

1. Current specification: \(R_{it} - R_{mt} = a + \sum_{k=0}^{5} b_k CM_{OIB_i, t-k} + \delta_i + e_{it} \)

\[
R_{it} - R_{mt} = a + \sum_{k=0}^{5} b_k CM_{OIB_i, t-k} + \sum_{k=0}^{5} c_k FUT_{OIB_i, t-k} + \delta_i + e_{it}
\]

2. My suggestion will be: \(R_{it} = a + \sum_{k=0}^{n} b_k CM_{OIB_i, t-k} + \delta_i + e_{it} \)

\[
R_{it} = a + \sum_{k=0}^{n} c_k FUT_{OIB_i, t-k} + \delta_i + e_{it}
\]

3. For intra-day returns (1 min, 5 min), my guess is that \(R_{mt} \) will not matter.

4. Autocorrelation and multicollinearity is a serious concern here. Why not consider \(OIB \) in difference?

5. Why only 5 lags are considered? Lags can be estimated endogenously.

6. The 1 min and 5 min interval are all exogenous. Can this be estimated endogenously? Can we find a time-varying estimate for this lead-lag relationship?
Suggestions
Why futures lead the cash market?

1. Market restrictions: Short-sale constraints in the cash market
 - Futures prices are symmetric in reflecting private good news and bad news.
 - The lead-lag relation would not be the same under bearish and bullish markets, and futures prices should lead the cash index to a greater degree under bad news.
 - My suggestion: This must be tested.

2. Transaction cost perspective: Futures market is less costly for traders to utilize than the cash market;
 - So when it becomes more/less costly for traders to exploit the information in the cash market, the lead-lag relation must change;
 - If the time period of study contains any such action, incorporating that will add value to the paper.
Econometric specification:

\[CM_{OIB_{it}} = r_{ft} + \sum_{k=1}^{n} CM_{OIB_{i,t-k}} + \delta_i + \epsilon_{it} \]

\[\Delta CM_{OIB_{it}} = r_{ft} + \delta_i + \epsilon_{it} \]
Some additional remarks

- **Liquidity concerns:** High non-trading probability is of concern. Some statistics on this must be reported;
- **Since it takes some time to start trading,** may be some robustness checks while excluding first 30 minutes will give more authenticity to your results.
Questions!

Contact us: mks@iitd.ac.in/ +91-8657437993