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Problem Context: Yield Curve Estimation

The bond market is watched closely by financial managers and
investors.

The bond market is a reflector of future economic activity and
inflation.

The future state of the bond market is reflected in the yield curve.

For this reason estimating the yield curve is very important in finance.
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Description of Yield Curve Data
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Description of Yield Curve Data

Yield curve data (US Treasuries) is available as a time series with a
frequency of one day

A curve is a set of 11 ordered pairs: (term structure, yield for term
structure)

This data can be viewed as a map or a function from term structures
to yields.

This kind of data is called functional data.
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Variability over Yield Curve during 2013
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Normal and Inverted Yield Curves
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Prevalent Methods of Estimating the Yield Curve

Nelson Siegel Model:

Models the yield curve using basis functions:

y(τ) = β1 + β2

(
1−e−λτ

λτ

)
+ β3

(
1−e−λτ

λτ − e−λτ
)

+ ε(τ), ε(τ) ∼

N(0, σ2
ε )

To forecast a yield curve, we use the historic values of the β′s to
forecast future values.

Multivariate Time Series Model: The yield for each term, τ , is
represented in terms of the previous k yields for the same term:

yi (τ) = β0 + β1.yi−1(τ) + . . .+ βkyi−k(τ)

To forecast the yield curve, we use a standard multi-variate time series
package like vars in R. Future yield estimates are forecast using
historic yield estimates.
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Proposed Method - Dynamic Gaussian Process

Motivation for the proposed method:

Gaussian Processes have been applied with great success to model
functional data
Dynamic Linear Models (Kalman Filter) have been applied with success
to model complex time series.
We wanted to explore marrying the two approaches.

Main elements of the approach:

A Gaussian Process is used to model the yield, yt in terms of the term
structure, τ :

yt = µt(τ) + εt
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Dynamic Gaussian Process... continued

An estimate for the yield at time t is provided using the previous time
step t − 1. The expected value of yt |Yt−1 :

µ̂t(τ∗) = E(µt(τ∗)|Yt−1)

= K (τ∗, τ |ρ̂t−1).[K (τ, τ |ρ̂t−1) + σ̂2t−1.I]
−1.yt−1(τ).

Once we have observed the yield curve at time t, we can update the
posterior process over yt as:

µ̂t.updated(τ∗) = E(µ̂t(τ∗)|Yt)

= µ̂t(τ∗) + K (τ∗, τ |ρ̂t).[K (τ, τ |ρ̂t) + σ̂2
t .I]
−1.
(
yt − µ̂t(τ)

)
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Results

We compared the performance of the proposed method with the
prevalent methods using data over a 10 year period. Results shown
below

Term GP MVTS TSNS
1 Month 0.104 0.088 0.121
3 Months 0.071 0.066 0.080
6 Months 0.054 0.047 0.088
1 Year 0.047 0.043 0.085
2 Years 0.052 0.055 0.088
3 Years 0.058 0.061 0.114
5 years 0.065 0.068 0.126
7 Years 0.065 0.070 0.149
10 Years 0.063 0.067 0.197
20 Years 0.061 0.065 0.977
30 Years 0.060 0.063 10.838

Table: RMSE for term structures for all methods
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Discussion of Results

The multi-variate time series method performs well in the short term
structure regions of the yield curve (term structures of one year or
less)

The proposed method does well in the medium and long term regions
of the yield curve.

The proposed method directly yields uncertainty estimates.

Uncertainty estimates and accuracy in the longer term regions are
very useful to analysts and in practice.
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Conclusions

The proposed method is effective in modeling yield curve data.

Functional data presents as time series in many domains - hourly
electrical load (electrical utilities), hourly requests received by a data
center or an application server.

The effectiveness of this method suggests that this approach could be
useful in other application areas as well.
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More Detail?

Functional Data Analysis

Let’s look into some different kind of examples
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Canadian average annual weather cycle
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Berkeley Growth Study
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Cursive Handwriting Samples

Figure: Measures of position of nib of a pen writing “fda”. 20 replications,
measurements taken at 200 hertz.
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ECG Data
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Variability over Yield Curve during 2013
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Features of Functional Data

Key Feature is smoothness.

yi = f (ti ) + εi

with t is continuum (usually time) and f (t) is smooth function
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Canadian average annual weather cycle

Model:
Tempi (t) ≈ βi1 + βi2 sin(πt/6) + βi3 cos(πt/6),
where Tempi is the temperature function for the i th weather station
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Yield Curve

Model:

yi (τ) = βi1+βi2

(
1−e−λτ

λτ

)
+βi3

(
1−e−λτ

λτ −e−λτ
)

+εi (τ), εi (τ) ∼ N(0, σ2
ε )

where yi (τ) is the yield curve on i th day
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Basis Expansion
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Representing Functions with Basis Functions

Consider i th record
yi = f (ti ) + εi

represents f (t) as

f (t) =
K∑
j=1

βjφj(t) = φβ

we say φ is a basis system for f (t).
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Representing Functions with Basis Functions

Terms for curvature in linear regression

yi = β1 + β2ti + β3t
2
i + . . .+ εi

implies
f (t) = β1 + β2t + β3t

2 + . . .
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Fourier Basis

sine cosine functions of incresing frequencies

yi = β1 + β2 sin(ωt) + β3 cos(ωt) + β4 sin(2ωt) + β5 cos(2ωt) . . .+ εi

constant ω = 2π/P defines the period P of oscillation of the first
sine/cosine pair.

φ = {1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt)...}
βT = {β1, β2, β3, . . .}

y = φβ + ε
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Other Basis

Exponential Basis φ = {1, eλ1t , eλ2t ...}

Gaussian Basis φ = {1, exp(−λ(t1 − c)2), exp(−λ(t2 − c)2)...}

Basis corresponds to Spline Regression

y = β0 +
K∑

k=1

βk(t − ξk)D+ + . . . ε

φ = {1, (t − ξ1)D+, (t − ξ2)D+...}

Yield Curve - NS Model: φ = {1,
(
1−e−λτ

λτ

)
,
(
1−e−λτ

λτ − e−λτ
)
},

where K = 3
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Estimation/Learning

We are writing the function with its basis expansion

y = φβ + ε

Lets assume basis φ is fully known

Problem is β is unknown - hence we estimate β.
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Estimation/Learning

Ordinary Least Square Methods

Penalized Least Square Methods

Bayesian Methods
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Penalized Least Square

The least square criterion with penalty:

PSSE = (y − φβ)T (y − φβ) + λP(f )

P(f ) measures the ”roughness” of the f

λ represents a continuous tuning parameter

λ ↑ ∞ roughness increasingly penalized; f (t) becomes smooth

λ ↓ 0 penalty reduces; f (t) model small shocks and tends to overfit as
it move towards OLS

Essentially P(f ) measures the curvature of f (t)
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The D Operator

Df (t) = ∂
∂t f (t) is the instantaneous slope of f (t)

D2f (t) = ∂2

∂t2
f (t) is the curvature of f (t)

We measure the size of the curvature for all of f by

P(f ) =

∫
[D2f (t)]2dt

=

∫
βT [D2φ(t)][D2φ(t)]Tβdt

= βTR2β,

where [R2]jk =
∫

[D2φj(t)][D2φk(t)]Tdt is the penalty matrix
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Bayesian method

Model:
y = f (t) + ε

ε ∼ N(0, σ2I) =⇒ y ∼ N(f (t), σ2I)

f (t) = φβ =
∞∑
k=1

φk(t)βk

,

β is unknown and want to estimate

Assuming β’s are uncorrelated random variable and φk(t) are known
deterministic real-valued functions.

Then due to Kosambi-Karhunen-Loeve theorem, we can say that
f (t) is a stochastic process.
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Gaussian Process Prior
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Gaussian Process Prior

As f (t) is a stochastic process if we assume β ∼ N(0, σ2I) then
f (t) = φβ follow Gaussian process.

Since f (t) is unknown function; therefore induced process on f (t) is
known as ‘Gaussian Process Prior’.

Prior on β:

p(β) ∝ exp

(
− 1

2σ2
βTβ

)
Induced Prior on f = φβ:

p(f ) ∝ exp

(
− 1

2σ2
βTφTK−1φβ

)
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Gaussian Process Prior

The prior mean and covariance of f are given by

E[f ] = φE [β] = φβ0

cov[f ] = E[f .f T ] = φ.E[β.βT]φT = σ2φ.φT = K

f ∼ Np(φβ0,K), ε ∼ Np(0, σ2I)

y ∼ Np(φβ0,K + σ2I)
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Gaussian Process Regression

The estimated value of y for a given t is the mean (expected) value
of the functions sampled from from the posterior at that value of t.

The expected value of the estimate at a given t is given by

f̂∗(t) = E (f∗|t,Y ) = K (t∗, t).[K (t, t) + σ2.I]−1.y

The variance of the estimate at a given t is given by

cov(f∗) = K (t∗, t∗)− K (t∗, t).[K (t, t) + σ2.I]−1.K (t, t∗)
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Gaussian Process Prior
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Estimated Curve using GP Prior
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Dynamic Gaussian Process

We have used the Kalman Filter Structure

An estimate for the yield at time t is provided using the previous time
step t − 1. The expected value of yt |Yt−1 :

µ̂t(τ∗) = E(µt(τ∗)|Yt−1)

= K (τ∗, τ |ρ̂t−1).[K (τ, τ |ρ̂t−1) + σ̂2t−1.I]
−1.yt−1(τ).

Once we have observed the yield curve at time t, we can update the
posterior process over yt as:

µ̂t.updated(τ∗) = E(µ̂t(τ∗)|Yt)

= µ̂t(τ∗) + K (τ∗, τ |ρ̂t).[K (τ, τ |ρ̂t) + σ̂2
t .I]
−1.
(
yt − µ̂t(τ)

)
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Thank You

sourish@cmi.ac.in
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