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like?

Current methods of estimation
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Conclusions

Rajiv Sambasivan, Sourish Das (CMI) A Statistical Machine Learning Approach To IGIDR 2017 2 /40



Problem Context: Yield Curve Estimation

@ The bond market is watched closely by financial managers and
investors.

@ The bond market is a reflector of future economic activity and
inflation.

@ The future state of the bond market is reflected in the yield curve.

@ For this reason estimating the yield curve is very important in finance.
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Description of Yield Curve Data
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Description of Yield Curve Data

@ Yield curve data (US Treasuries) is available as a time series with a
frequency of one day

@ A curve is a set of 11 ordered pairs: (term structure, yield for term
structure)

@ This data can be viewed as a map or a function from term structures
to yields.

@ This kind of data is called functional data.
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Variability over Yield Curve during 2013
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Normal and Inverted Yield Curves

Inverted and Normal Yield Curves
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Prevalent Methods of Estimating the Yield Curve

o Nelson Siegel Model:

e Models the yield curve using basis functions:
AT

- —AT
y(1)=B1+ B2 <1§T ) + fs <1§T - e‘AT> +e(r), e(r)~
N(0,0?)
e To forecast a yield curve, we use the historic values of the 3’s to
forecast future values.

@ Multivariate Time Series Model: The yield for each term, T, is
represented in terms of the previous k yields for the same term:

Yi(7) = Bo+ Bryi_1(7) + .-+ Bryi_k(7)

o To forecast the yield curve, we use a standard multi-variate time series
package like vars in R. Future yield estimates are forecast using
historic yield estimates.
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Proposed Method - Dynamic Gaussian Process

@ Motivation for the proposed method:
o Gaussian Processes have been applied with great success to model
functional data
o Dynamic Linear Models (Kalman Filter) have been applied with success
to model complex time series.
o We wanted to explore marrying the two approaches.
@ Main elements of the approach:
o A Gaussian Process is used to model the yield, y, in terms of the term
structure, T:

Yo = we(7) + €
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Dynamic Gaussian Process... continued

@ An estimate for the yield at time t is provided using the previous time
step t — 1. The expected value of y,|Y;_1 :

fie(m5) = E(ue(m%)[Ye-1)
= K(7#,7]pe-1) K (7, 7|pe-1) + 671 N1y, 1 (7).

@ Once we have observed the yield curve at time t, we can update the
posterior process over y, as:

ﬁt.updated(T*) - E(At(T*NYt)
= fe(7%) + K(m5, 7|pe) [K (7, 71 5e) + G517 (ye — fue(7))
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@ We compared the performance of the proposed method with the
prevalent methods using data over a 10 year period. Results shown
below

Term GP MVTS | TSNS
1 Month | 0.104 | 0.088 | 0.121
3 Months | 0.071 | 0.066 | 0.080
6 Months | 0.054 | 0.047 | 0.088
1 Year 0.047 | 0.043 | 0.085
2 Years 0.052 | 0.055 0.088
3 Years 0.058 | 0.061 0.114
5 years 0.065 | 0.068 0.126
7 Years 0.065 | 0.070 0.149
10 Years | 0.063 | 0.067 | 0.197
20 Years | 0.061 | 0.065 | 0.977
30 Years | 0.060 | 0.063 | 10.838

Table: RMSE for term structures for all methods
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Discussion of Results

@ The multi-variate time series method performs well in the short term
structure regions of the yield curve (term structures of one year or
less)

@ The proposed method does well in the medium and long term regions
of the yield curve.

@ The proposed method directly yields uncertainty estimates.

@ Uncertainty estimates and accuracy in the longer term regions are
very useful to analysts and in practice.
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Conclusions

@ The proposed method is effective in modeling yield curve data.

@ Functional data presents as time series in many domains - hourly
electrical load (electrical utilities), hourly requests received by a data
center or an application server.

@ The effectiveness of this method suggests that this approach could be
useful in other application areas as well.
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@ More Detail?

o Functional Data Analysis

@ Let's look into some different kind of examples
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Canadian average annual weather cycle
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Berkeley Growth Study
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Cursive Handwriting Samples
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Figure: Measures of position of nib of a pen writing “fda". 20 replications,
measurements taken at 200 hertz.
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Variability over Yield Curve during 2013
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Features of Functional Data

@ Key Feature is smoothness.
yi = f(ti) + €

with t is continuum (usually time) and 7(t) is smooth function
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Canadian average annual weather cycle
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@ Model:
Temp;(t) ~ Bi1 + Bizsin(nt/6) + Biz cos(mt/6),
where Temp; is the temperature function for the it weather station
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Yield Curve
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o Model:
yi(1) = Bin+Bi (1;”) +Bi3 (lf’\f —e‘”) +€i(1), €(r) ~ N(0,02)

where y;(7) is the yield curve on it day
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Basis Expansion
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Representing Functions with Basis Functions

e Consider ith record
yi = f(t,') + €;

represents f(t) as
K
F(£) = Bigi(t) = ¢8
j=1

we say ¢ is a basis system for f(t).
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Representing Functions with Basis Functions

@ Terms for curvature in linear regression
yi=PB1+ Bati+ B3ti + ...+ ¢

implies
f(t) = P+ Bat + B3t + ...
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Fourier Basis

@ sine cosine functions of incresing frequencies
yi = P1 + Pasin(wt) + B3 cos(wt) + Basin(2wt) + Bs cos(2wt) ... + €;

@ constant w = 27t/ P defines the period P of oscillation of the first
sine/cosine pair.

e ¢ = {1,sin(wt), cos(wt), sin(2wt), cos(2wt)...}
° BT = {617/827637"'}

y=¢8+c¢
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o Exponential Basis ¢ = {1, eM? et .}
o Gaussian Basis ¢ = {1,exp(—\(t1 — ¢)?),exp(—=A(t2 — ¢)?)...}
o Basis corresponds to Spline Regression
K
y=B0+> Blt—&)P+.. ¢
k=1

d={1L(t-&)2, (t—&)7..}

o Yield Curve - NS Model: ¢ = {1, (1267 (=77 _ ¢=)7)},
where K =3
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Estimation/Learning

@ We are writing the function with its basis expansion

y=¢8+c¢

@ Lets assume basis ¢ is fully known

@ Problem is 3 is unknown - hence we estimate (3.
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Estimation/Learning

@ Ordinary Least Square Methods
@ Penalized Least Square Methods

@ Bayesian Methods
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Penalized Least Square

@ The least square criterion with penalty:

PSSE = (y—¢B) (v — ¢B) + AP(f)

P(f) measures the "roughness” of the f
A represents a continuous tuning parameter

e A1 oo roughness increasingly penalized; f(t) becomes smooth

o X 0 penalty reduces; f(t) model small shocks and tends to overfit as
it move towards OLS

@ Essentially P(f) measures the curvature of f(t)
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The D Operator

o Df(t) = £f(t) is the instantaneous slope of f(t)
o D?f(t) = g—;f(t) is the curvature of f(t)

@ We measure the size of the curvature for all of f by

P(F) = / [D2F(+)]2dt
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The D Operator

o Df(t) = £f(t) is the instantaneous slope of f(t)
o D2f(t) = 25 f(t) is the curvature of (t)

@ We measure the size of the curvature for all of f by
P(f) = / (D?F(6)2dt
— [ 8700?60 e
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The D Operator

o Df(t) = £f(t) is the instantaneous slope of f(t)
o D2f(t) = 25 f(t) is the curvature of (t)

@ We measure the size of the curvature for all of f by
P(f) = / (D?F(6)2dt

— [ 8700?60 e
= ,BTR2,6,
where [Ro]jx = [[D?¢(t)][D?¢«(t)] " dt is the penalty matrix
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Bayesian method

o Model:
y="f(t)+e

o ¢ ~N(0,0%1) = y ~ N(f(t),0?l)

F(t) =B =" éx(t)Bs
k=1

@ 3 is unknown and want to estimate
Assuming f3's are uncorrelated random variable and ¢(t) are known
deterministic real-valued functions.

@ Then due to Kosambi-Karhunen-Loeve theorem, we can say that
f(t) is a stochastic process.
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Gaussian Process Prior
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Gaussian Process Prior

e As f(t) is a stochastic process if we assume 3 ~ N(0, 52l) then
f(t) = ¢ follow Gaussian process.

@ Since f(t) is unknown function; therefore induced process on f(t) is
known as ‘Gaussian Process Prior’.

Prior on 3:
1
pl) xexp ( — 52075)
Induced Prior on f = ¢3:

p(f) o exp < — ZizﬂT(bTK_lqﬁ,@)
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Gaussian Process Prior

@ The prior mean and covariance of f are given by
E[f] = ¢E[B] = ¢B0

cov[f] = E[f.fT] = ¢.E[3.87]¢" = 0¢.6" =K

f ~ Np(pBo,K), €~ Ny0,02l)

y ~ Np(¢Bo, K+ )

Rajiv Sambasivan, Sourish Das (CMI) A Statistical Machine Learning Approach To IGIDR 2017



Gaussian Process Regression

@ The estimated value of y for a given t is the mean (expected) value
of the functions sampled from from the posterior at that value of t.

@ The expected value of the estimate at a given t is given by
f(t) = E(f]t,Y) = K(t., t).[K(t,t) + o2 1] Ly
@ The variance of the estimate at a given t is given by

cov(f,) = K(ts, t.) — K(ts, t).[K(t, t) + o2 1] LK (¢, t.)

Rajiv Sambasivan, Sourish Das (CMI) A Statistical Machine Learning Approach To IGIDR 2017 36 / 40



Gaussian Process Prior
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Estimated Curve using GP Prior

—2-

-50 -25 ~ 00 25 5.0

Rajiv Sambasivan, Sourish Das (CMI) A Statistical Machine Learning Approach To IGIDR 2017 38 / 40



Dynamic Gaussian Process

@ We have used the Kalman Filter Structure

@ An estimate for the yield at time t is provided using the previous time
step t — 1. The expected value of y,|Y;_1 :

fur(Tx) = E(pe(7%)[Ye-1)
= K(7#,7]pe-1) K (7, 71pe-1) + 671 N1y, (7).

@ Once we have observed the yield curve at time t, we can update the
posterior process over y, as:

,at.updated(T*) - E(At(T*)|Yt)
= fie(m*) + K (7%, 7|pe).[K (7, 71pe) + 8ZN 7 (ye — fie(7))
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Thank You

sourish@cmi.ac.in
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