A Statistical Machine Learning Approach To Yield Curve Forecasting

Rajiv Sambasivan¹ Sourish Das²

¹Department of Computer Science Chennai Mathematical Institute

²Department of Mathematics Chennai Mathematical Institute

IGIDR 2017

- Discussion of problem context why is estimating the yield curve important?
- Description of Yield Curve Data what does yield curve data look like?
- Current methods of estimation
- Methodology proposed in this work
- Discussion of Results
- Conclusions

- The bond market is watched closely by financial managers and investors.
- The bond market is a reflector of future economic activity and inflation.
- The future state of the bond market is reflected in the yield curve.
- For this reason estimating the yield curve is very important in finance.

Description of Yield Curve Data

🔍 🔍 M Inbox (1,503) - sourish.das 🐑 🗙 🕌	JetPrivilege - Rews	ards & Loyol ×	Oally 1	Treasury Yie	Id Curve Ratio	×						
→ C a Secure https://www.treasury.go	w/resource-center	r/data-chart-	- center/inter	est-rates/	Pages/TextVi	iew.aspx?da	ta=yieldYear8	iyear=2017		风前	ଇ & ≑ 0 ®	
U.S. DEPARTMENT OF THE TREASURY					-	Conta Espai	ict Us Press fol Language	Center Blog 15	Accessibility Google Privacy			
Home Treasury Fe	r About	Resourc	ce Center	e		\mathcal{Y}	Services	Initiativ	es Caree	rs Con	Advanced Search	
Libraries										AR		
Consumer Policy	Resourc	e Cent	er									
Financial Markets, Financial Institutions, and Fiscal Service	Home » Resource Daily Trease	ce Center » D SURY Yiel Is to this con	sts and Char d Curve tent.	rts Center Rates	> Interest Rat	e Statistics >	TextView					
Financial Sanctions	XML These data are also available in XML format by clicking on the XML icon.											
International	XSO 🤍 The	schema for	the XML is	available	in XSD form	at by clickin	g on the XSD	icon.				
Small Business Programs	If you are having trouble viewing the above XML in your browser, click here.											
Tax Policy	To access interest rate data in the legacy XML format and the corresponding XSD schema, click here. Select type of Interest Rate Data Data Travenum Yatel Crune Rate = 1 Col											
Terrorism and Illicit Finance	Select Time Period			-								
Data and Charts Center	2017			•	Go							
Agency MBS Purchase Program	Date	1 Mo	3 Mo	6 Mo	1 Yr	2 Yr	3 Yr	5 Yr 7	Yr 10 Y	'r 20 Y	r 30 Yr	
Interest Rate Statistics	01/03/17	0.52	0.53	0.65	0.89	1.22	1.50	1.94	.26 2.45	2.78	3.04	
Investor Class Auction	01/04/17	0.49	0.53	0.63	0.87	1.24	1.50	1.94	.26 2.46	2.78	3.05	
Allotments	01/05/17	0.51	0.52	0.62	0.83	1.17	1.43	1.86	.18 2.31	2.69	2.96	
Quarterly Refunding	01/06/17	0.50	0.53	0.61	0.85	1.22	1.50	1.92	.23 2.42	2.73	3.00	
Recovery Act	01/09/17	0.50	0.50	0.60	0.82	1.21	1.47	1.89	.18 2.38	3 2.69	2.97	

- (日)

- Yield curve data (US Treasuries) is available as a time series with a frequency of one day
- A curve is a set of 11 ordered pairs: (term structure, yield for term structure)
- This data can be viewed as a map or a function from term structures to yields.
- This kind of data is called functional data.

Variability over Yield Curve during 2013

Rajiv Sambasivan, Sourish Das (CMI) A Statistical Machine Learning Approach To

Normal and Inverted Yield Curves

IGIDR 2017 7 / 40

Prevalent Methods of Estimating the Yield Curve

- Nelson Siegel Model:
 - Models the yield curve using basis functions:

$$y(\tau) = \beta_1 + \beta_2 \left(\frac{1 - e^{-\lambda\tau}}{\lambda\tau}\right) + \beta_3 \left(\frac{1 - e^{-\lambda\tau}}{\lambda\tau} - e^{-\lambda\tau}\right) + \epsilon(\tau), \quad \epsilon(\tau) \sim N(0, \sigma_{\epsilon}^2)$$

- To forecast a yield curve, we use the historic values of the $\beta's$ to forecast future values.
- Multivariate Time Series Model: The yield for each term, τ , is represented in terms of the previous k yields for the same term:

$$\mathbf{y}_i(\tau) = \beta_0 + \beta_1 \cdot \mathbf{y}_{i-1}(\tau) + \ldots + \beta_k \mathbf{y}_{i-k}(\tau)$$

• To forecast the yield curve, we use a standard multi-variate time series package like vars in R. Future yield estimates are forecast using historic yield estimates.

- Motivation for the proposed method:
 - Gaussian Processes have been applied with great success to model functional data
 - Dynamic Linear Models (Kalman Filter) have been applied with success to model complex time series.
 - We wanted to explore marrying the two approaches.
- Main elements of the approach:
 - A Gaussian Process is used to model the yield, \mathbf{y}_t in terms of the term structure, τ :

$$\mathbf{y}_t = \mu_t(\tau) + \boldsymbol{\epsilon}_t$$

 An estimate for the yield at time t is provided using the previous time step t - 1. The expected value of y_t|Y_{t-1}:

$$\begin{aligned} \hat{\mu}_t(\tau*) &= \mathbb{E}(\mu_t(\tau*)|\mathbf{Y}_{t-1}) \\ &= \mathcal{K}(\tau*,\tau|\hat{\rho}_{t-1}).[\mathcal{K}(\tau,\tau|\hat{\rho}_{t-1}) + \hat{\sigma}_{t-1}^2.\mathbf{I}]^{-1}.\mathbf{y}_{t-1}(\tau). \end{aligned}$$

• Once we have observed the yield curve at time *t*, we can update the posterior process over **y**_t as:

$$\hat{\mu}_{t.updated}(\tau*) = \mathbb{E}(\hat{\mu}_t(\tau*)|\mathbf{Y}_t) \\ = \hat{\mu}_t(\tau*) + \mathcal{K}(\tau*,\tau|\hat{\rho}_t).[\mathcal{K}(\tau,\tau|\hat{\rho}_t) + \hat{\sigma}_t^2.\mathbf{I}]^{-1}.(\mathbf{y}_t - \hat{\mu}_t(\tau))$$

Results

• We compared the performance of the proposed method with the prevalent methods using data over a 10 year period. Results shown below

Term	GP	MVTS	TSNS			
1 Month	0.104	0.088	0.121			
3 Months	0.071	0.066	0.080			
6 Months	0.054	0.047	0.088			
1 Year	0.047	0.043	0.085			
2 Years	0.052	0.055	0.088			
3 Years	0.058	0.061	0.114			
5 years	0.065	0.068	0.126			
7 Years	0.065	0.070	0.149			
10 Years	0.063	0.067	0.197			
20 Years	0.061	0.065	0.977			
30 Years	0.060	0.063	10.838			

Table: RMSE for term structures for all methods

- The multi-variate time series method performs well in the short term structure regions of the yield curve (term structures of one year or less)
- The proposed method does well in the medium and long term regions of the yield curve.
- The proposed method directly yields uncertainty estimates.
- Uncertainty estimates and accuracy in the longer term regions are very useful to analysts and in practice.

- The proposed method is effective in modeling yield curve data.
- Functional data presents as time series in many domains hourly electrical load (electrical utilities), hourly requests received by a data center or an application server.
- The effectiveness of this method suggests that this approach could be useful in other application areas as well.

- More Detail?
- Functional Data Analysis
- Let's look into some different kind of examples

Canadian average annual weather cycle

IGIDR 2017 15 / 40

Berkeley Growth Study

Cursive Handwriting Samples

Figure: Measures of position of nib of a pen writing "fda". 20 replications, measurements taken at 200 hertz.

IGIDR 2017 17 / 40

Time

Rajiv Sambasivan, Sourish Das (CMI) A Statistical Machine Learning Approach To

IGIDR 2017

イロト イヨト イヨト イヨト

3

18 / 40

Variability over Yield Curve during 2013

Rajiv Sambasivan, Sourish Das (CMI) A Statistical Machine Learning Approach To

• Key Feature is smoothness.

$$y_i = f(t_i) + \epsilon_i$$

with t is continuum (usually time) and f(t) is smooth function

Canadian average annual weather cycle

• Model: $\operatorname{Temp}_{i}(t) \approx \beta_{i1} + \beta_{i2} \sin(\pi t/6) + \beta_{i3} \cos(\pi t/6),$ where Temp_{i} is the temperature function for the i_{i}^{th} weather station

• Model: $y_i(\tau) = \beta_{i1} + \beta_{i2} \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} \right) + \beta_{i3} \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} - e^{-\lambda \tau} \right) + \epsilon_i(\tau), \quad \epsilon_i(\tau) \sim N(0, \sigma_{\epsilon}^2)$ where $y_i(\tau)$ is the yield curve on i^{th} day

Rajiv Sambasivan, Sourish Das (CMI) A Statistical Machine Learning Approach To

IGIDR 2017 22 / 40

Basis Expansion

Image: A mathematical states and the states

• Consider *i*th record

$$y_i = f(t_i) + \epsilon_i$$

represents f(t) as

$$f(t) = \sum_{j=1}^{K} \beta_j \phi_j(t) = \phi oldsymbol{eta}$$

we say ϕ is a basis system for f(t).

• Terms for curvature in linear regression

$$y_i = \beta_1 + \beta_2 t_i + \beta_3 t_i^2 + \ldots + \epsilon_i$$

implies

$$f(t) = \beta_1 + \beta_2 t + \beta_3 t^2 + \dots$$

sine cosine functions of incresing frequencies

 $y_i = \beta_1 + \beta_2 \sin(\omega t) + \beta_3 \cos(\omega t) + \beta_4 \sin(2\omega t) + \beta_5 \cos(2\omega t) \dots + \epsilon_i$

• constant $\omega = 2\pi/P$ defines the period P of oscillation of the first sine/cosine pair.

•
$$\phi = \{1, \sin(\omega t), \cos(\omega t), \sin(2\omega t), \cos(2\omega t)...\}$$

• $\beta^T = \{\beta_1, \beta_2, \beta_3, ...\}$

$$y = \phi \beta + \epsilon$$

Other Basis

- Exponential Basis $\phi = \{1, e^{\lambda_1 t}, e^{\lambda_2 t} ...\}$
- Gaussian Basis $\phi = \{1, \exp(-\lambda(t_1 c)^2), \exp(-\lambda(t_2 c)^2)...\}$
- Basis corresponds to Spline Regression

$$y = \beta_0 + \sum_{k=1}^{K} \beta_k (t - \xi_k)_+^D + \dots \epsilon$$

$$\phi = \{1, (t-\xi_1)^D_+, (t-\xi_2)^D_+...\}$$

• Yield Curve - NS Model: $\phi = \{1, (\frac{1-e^{-\lambda\tau}}{\lambda\tau}), (\frac{1-e^{-\lambda\tau}}{\lambda\tau} - e^{-\lambda\tau})\},\$ where K = 3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• We are writing the function with its basis expansion

 $y = \phi \beta + \epsilon$

- Lets assume basis ϕ is fully known
- Problem is β is unknown hence we estimate β .

- Ordinary Least Square Methods
- Penalized Least Square Methods
- Bayesian Methods

• The least square criterion with penalty:

PSSE =
$$(y - \phi\beta)^T (y - \phi\beta) + \lambda P(f)$$

P(f) measures the "roughness" of the f λ represents a continuous tuning parameter

- $\lambda \uparrow \infty$ roughness increasingly penalized; f(t) becomes smooth
- $\lambda \downarrow 0$ penalty reduces; f(t) model small shocks and tends to overfit as it move towards OLS
- Essentially P(f) measures the curvature of f(t)

The D Operator

- $Df(t) = \frac{\partial}{\partial t}f(t)$ is the instantaneous slope of f(t)
- $D^2 f(t) = \frac{\partial^2}{\partial t^2} f(t)$ is the curvature of f(t)
- We measure the size of the curvature for all of f by

$$P(f) = \int [D^2 f(t)]^2 dt$$

The D Operator

•
$$Df(t) = \frac{\partial}{\partial t}f(t)$$
 is the instantaneous slope of $f(t)$

•
$$D^2 f(t) = \frac{\partial^2}{\partial t^2} f(t)$$
 is the curvature of $f(t)$

• We measure the size of the curvature for all of f by

$$P(f) = \int [D^2 f(t)]^2 dt$$

= $\int \beta^T [D^2 \phi(t)] [D^2 \phi(t)]^T \beta dt$

The D Operator

•
$$Df(t) = \frac{\partial}{\partial t}f(t)$$
 is the instantaneous slope of $f(t)$

•
$$D^2 f(t) = \frac{\partial^2}{\partial t^2} f(t)$$
 is the curvature of $f(t)$

• We measure the size of the curvature for all of f by

$$P(f) = \int [D^2 f(t)]^2 dt$$

= $\int \beta^T [D^2 \phi(t)] [D^2 \phi(t)]^T \beta dt$
= $\beta^T R_2 \beta$,

where $[R_2]_{jk} = \int [D^2 \phi_j(t)] [D^2 \phi_k(t)]^T dt$ is the penalty matrix

Model:

,

$$\mathbf{y} = f(t) + \epsilon$$

•
$$\epsilon \sim \mathbf{N}(\mathbf{0}, \sigma^2 \mathbf{I}) \implies y \sim \mathbf{N}(f(t), \sigma^2 \mathbf{I})$$

$$f(t) = \phi \beta = \sum_{k=1}^{\infty} \phi_k(t) \beta_k$$

• $oldsymbol{eta}$ is unknown and want to estimate

Assuming β 's are uncorrelated random variable and $\phi_k(t)$ are known deterministic real-valued functions.

• Then due to **Kosambi-Karhunen-Loeve** theorem, we can say that f(t) is a stochastic process.

Gaussian Process Prior

- As f(t) is a stochastic process if we assume $\beta \sim \mathbf{N}(0, \sigma^2 \mathbf{I})$ then $f(t) = \phi \beta$ follow Gaussian process.
- Since f(t) is unknown function; therefore induced process on f(t) is known as 'Gaussian Process Prior'.

Prior on β :

$$p(eta) \propto \exp\left(-rac{1}{2\sigma^2}eta^Teta
ight)$$

Induced Prior on $f = \phi \beta$:

$$p(f) \propto \exp\left(-rac{1}{2\sigma^2}oldsymbol{eta}^{\mathsf{T}}oldsymbol{\phi}^{\mathsf{T}}oldsymbol{\mathsf{K}}^{-1}\phioldsymbol{eta}
ight)$$

• The prior mean and covariance of f are given by

$$\mathbf{E}[f] = \phi E[\boldsymbol{\beta}] = \phi \boldsymbol{\beta}_0$$

$$\mathsf{cov}[f] = \mathsf{E}[f.f^{\mathsf{T}}] = \phi.\mathsf{E}[\beta.\beta^{\mathsf{T}}]\phi^{\mathsf{T}} = \sigma^2 \phi.\phi^{\mathsf{T}} = \mathsf{K}$$

$$f \sim \mathbf{N}_{\rho}(\phi eta_0, \mathbf{K}), \ \epsilon \sim \mathbf{N}_{\rho}(0, \sigma^2 \mathbf{I})$$

$$\mathbf{y} \sim \mathbf{N}_{p}(\phi \beta_{0}, \mathbf{K} + \sigma^{2} \mathbf{I})$$

< □ > < 同 > < 三 > <

- The estimated value of y for a given t is the mean (expected) value of the functions sampled from from the posterior at that value of t.
- The expected value of the estimate at a given t is given by

$$\widehat{f}_*(t) = \mathsf{E}(f_*|t,Y) = \mathsf{K}(t_*,t).[\mathsf{K}(t,t)+\sigma^2.\mathbf{I}]^{-1}.$$
y

• The variance of the estimate at a given t is given by

$$cov(f_*) = K(t_*, t_*) - K(t_*, t) [K(t, t) + \sigma^2 I]^{-1} K(t, t_*)$$

Gaussian Process Prior

IGIDR 2017 37 / 40

Estimated Curve using GP Prior

Rajiv Sambasivan, Sourish Das (CMI) A Statistical Machine Learning Approach To

IGIDR 2017 38 / 40

• We have used the Kalman Filter Structure

 An estimate for the yield at time t is provided using the previous time step t - 1. The expected value of y_t|Y_{t-1}:

$$\begin{aligned} \hat{\mu}_t(\tau*) &= \mathbb{E}(\mu_t(\tau*) | \mathbf{Y}_{t-1}) \\ &= \mathcal{K}(\tau*, \tau | \hat{\rho}_{t-1}) . [\mathcal{K}(\tau, \tau | \hat{\rho}_{t-1}) + \hat{\sigma}_{t-1}^2 . \mathbf{I}]^{-1} . \mathbf{y}_{t-1}(\tau). \end{aligned}$$

• Once we have observed the yield curve at time *t*, we can update the posterior process over **y**_t as:

$$\begin{aligned} \hat{\mu}_{t.updated}(\tau*) &= \mathbb{E}(\hat{\mu}_t(\tau*)|\mathbf{Y}_t) \\ &= \hat{\mu}_t(\tau*) + K(\tau*,\tau|\hat{\rho}_t) \cdot [K(\tau,\tau|\hat{\rho}_t) + \hat{\sigma}_t^2 \cdot \mathbf{I}]^{-1} \cdot (\mathbf{y}_t - \hat{\mu}_t(\tau)) \end{aligned}$$

Thank You

sourish@cmi.ac.in

Rajiv Sambasivan, Sourish Das (CMI) A Statistical Machine Learning Approach To

Image: A match a ma