Analytics in India a few trends –
field notes from a layman

Hindol Basu
India presents its own unique challenges in leveraging the power of data

Focus on quantified impact leading to top and bottom line results

Focus on data quality and data management

Balance between intuitive feel of models and higher predictive power

Communicating analytics across the organization

Adopt a “test & learn” approach

1. Start with KPIs and understand how they translate to financials and what are the benchmarks
2. Identify how benefits will be measured – test vs. control, pre vs. post, champion vs. challenger
3. Identify the change management requirement and manage the softer aspects of implementation
4. Start with glass box methodologies – so that business users have confidence
5. Move from glass box to black box methods (if needed)
The limitations of a data driven approach is often not understood properly.

- **Analytics will solve all my problems**
- **I need the most complex solutions that I have Googled**
- **Models will give me benefits, irrespective of any process glitch**
- **I don’t need to understand what has gone into your model, I just want benefits**

Truth lies somewhere in the middle.

- **I know have been running this business for the last 20 years, I know what to do and how to do**
- **Give me pivot tables and I can find out the rest**
- **I am fixing basic IT systems, we will talk about models 3 years from noe**
- **Show me the variables, their trends and only if I think that all of them make business sense, will I implement the model**
These gives rise to 4 key challenges

1. Difficulty in implementing relatively complex models (neural network, tree ensemble etc.)

2. Data quality issues, sparse data and lack of data

3. Change management required to push implementation

4. Sound methodology of tracking, attributing and demonstrating financial benefits
Difficulty in implementing complex models

Models with no or very limited interactions

\[
d (\text{Prediction}) = K \text{ (irrespective of } X_2 \ldots X_n) \\
d X_1 = KX_2 \text{ (irrespective of } X_3 \ldots X_n) \\
d (\text{Prediction}) = KX_1 \\
d X_1
\]

Complex interactions

\[
\delta (\text{Prediction}) = K \\
\delta X_1 \quad X_2 \ldots X_n
\]

Simple decision trees

- Use intuitive models in cases where current processes require subject matter expert judgement
- Use complex modes in cases where only human intelligence needs to be automated
- Create sensitivity analysis to help unbox complex models
- Leverage intelligent methods of segmentation, tree interaction variables etc. to build power of interaction within simple models
Data quality – data is our best friend, poor data quality is our worst enemy

Models with no or very limited interactions

- Missing value
- Erroneous values
- Errors creeping into the data during summarization and storage in warehouse
- Lack of unique ID for the entity of interest (customer, supplier etc.)
- Lack of data capture
- Lack of history
- Issues in human data capture
- Lack of a proper data owner who can help

Models with no or very limited interactions

- Unique entity creation (unique customer, household, supplier etc.)
 - Particularly critical for non-financial services (in the absence of Aadhar, PAN etc.)
 - Fuzzy matching of name, address
 - Issues of multiple phone, email
- Value correlation analysis
- Identify if missings are part of data generation process
- Analytical methodologies for sparse data handling
 - Expectation maximisation
 - MCMC
- Non-human captured data: clickstreams, sensors etc. tend to have far lesser issues
- Plan for future data capture
- Takes about 75%-80% of project timeline
Key Initiative-1: Aggregate multiple sources of public external data

Census
NSO
Credit Bureau
Vehicle registration
Crop prices
Ministry of Corp Affairs
Map data
.... and many more

Developing and managing a complex external data at various levels of aggregation

Levels of aggregation

Frequency of update
Legal restrictions

Proprietary surveys
Customer data
Augmented (off-us) customer data from partners, affiliates
Lists from marketing activities

• Most organizations view external data only for the purpose of solving a specific problem
 • Store/branch location
 • Demand forecasting at micro geo level
 • Distribution planning
 • And others

• There may be a lack of concerted efforts in creating a comprehensive economic data repository by companies

• Indiucus and Nielsen may be a good example
Key Initiative-2: Sensor data for manufacturing

Operations managers have been using traditional control charts for ages

- Key sensors have been part of most equipment
- Univariate approach using only max and min
- Multi variate anomaly detection
- Availability of low cost of sensors

Key use cases
- Predictive Asset Management
- Predictive Quality Management
- Unsupervised learning for anomaly detection
- Supervised learning for identifying quality issues, equipment failure
- Thresholding is another key problem
- Type-1 and Type-2 errors have different costs associated. Hence, meta cost analysis is important for thresholding
- The data is structured but of high frequency in update; hence, specific data engineering is important
- Linking operations technology to ERP, CRM etc.
Key Initiative-3: consumer companies trying to bring efficiency of marketing

Solution Landscape

1. 360 degree customer view – data integration and unique ID creation
2. Micro segmentation – use demogs, transaction, interaction and others (including channel preference)
3. Targeting models for cross sell, retention and reactivation
4. Optimized communication to maximise revenue

Managing the curse of false positives in churn models
Key Initiative-4: Automated customer interaction

- **Retrieval bots**: Retrieval bots do not generate any response on their own, they pick up one of the pre-defined responses from the thousands of available responses.
- **Conversational bots**: are a subset of retrieval bots, that uses business rules derived from expected flow of conversations.
- **Generative bots**: these bots actually generate a response given the question.
- **Importance of the context**: Specific retrieval rules (models) should be created for specific context so as to identify the right response.
- **Usage of paid frameworks (e.g. Microsoft bot framework)**: Tends to be very expensive in the long run. Loss of IP.
Key Initiative-5: Explore new data sources

- Images
- Scanned documents
- Map data
- Satellite image data
- Video data
- Wifi Latching data

Use features from the image as an input along with other structured data for better decision making.

- Applications of satellite images for agricultural applications
- Physical click stream
- Movement within store
- Store fraud
Key Initiative-6: GPS data for logistics management

- Availability of real time GPS data has very interesting applications for India
 - Avoiding toll roads
 - Pilferage
 - Idle time
 - And many more
- Stochastic nature of lead times
- Semi real time re-routing
- Driver behaviour monitoring
- Plugging in telematics for failure prediction
Key Initiative-7: Small data

Big Data
- Social media
- Customer data
- External lists and consortium data
- Example: Facebook likes

Small Data
- Sample survey
- Customer survey
- Example: preferred lifestyle

Value
- Model
- Example: predict lifestyle based on likes

$$X + Y = f(X)$$
Key Initiative-8: Risk estimation

Credit risk management across customer life cycle

<table>
<thead>
<tr>
<th>Acquisitions</th>
<th>Existing Customer Management</th>
<th>Collections and Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provisioning & Capital management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Compensation and Balance Sheet Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identification of risk pools</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data
- Reports
- Business Analysis
- Predictive Analytics
- Optimization
- Governance and Tracking

Acquisitions Existing Customer Management Collections and Recovery Provisioning and P&L Management Capital Compensation and Balance Sheet Management Identification of risk pools

Acquisition

Early stage collection

Late stage collection & recovery

Low risk existing customer management

High risk existing customer management

Risk parameter – PD, EAD, LGD estimates

Expected Loss

Unexpected Loss

Macroeconomic impact assessment

Simulation & Stress Testing

TTC vs. PIT estimates & choice of rating philosophy

Asset correlation and small risk pool identification
Key Initiative-8: Risk estimation (consumer and SMEs)

Risk distribution - SMEs

Risk Distribution Across All Risk Drivers

- Location
- Industry
- Type of company
- Years in business
- No of employees
- Age of audited financial statement
- Ownership of premises
- Litigation
- Y-o-Y change in revenue
- Revenue
- Age
- Paid up capital
- Default on any loan obligation in
- Number of years of experience in
- Highest qualification
- Loan purpose
- Loan to Value requested
- Type of accommodation
- PAT (percentage) last year
- Interest coverage: EBIT/Interest
- Interest Coverage: EBIT/Interest
- Debt to equity ratio
- Current ratio
- Debt to equity ratio
- Current ratio

- Lack of financial statement
- Performance definition – grouping facilities, entities, customer group to account for risk spreading across groups
- Alternate source of data – EPF submission, bill payment, etc.