Do regulatory hurdles work on algorithmic trading?

Nidhi Aggarwal
(Finance Research Group, IGIDR)

Venkatesh Panchapagesan
(IIM Bangalore)

Susan Thomas
(Finance Research Group, IGIDR)

October 11, 2017
Traditional view: regulatory intervention is justified if these conditions hold -

- There is an identified market failure;
- Proposed intervention addresses the market failure appropriately;
- Costs are outweighed by gains.

If not, interventions can result in unintended consequences. Examples: the Andhra Pradesh ban on microfinance in 2010 (Sane and Thomas, 2016); interventions on exchange currency derivatives (loss in international competitiveness of Indian currency markets, 2010-).
Traditional view: regulatory intervention is justified if these conditions hold -

- There is an identified market failure;
- Proposed intervention addresses the market failure appropriately;
- Costs are outweighed by gains.

If not, interventions can result in unintended consequences.

Examples: the Andhra Pradesh ban on microfinance in 2010 (Sane and Thomas, 2016); interventions on exchange currency derivatives (loss in international competitiveness of Indian currency markets, 2010-).

Recent view: regulatory interventions on algorithmic / high frequency trading appear to be driven by public interest concerns. Concerns arise despite research evidence on benefits of algorithmic trading on market quality.

This paper

- Examines the effect of a regulatory intervention in the context of Indian equity markets.

- **The intervention**: Charge fees/penalise traders with high orders to trades (OTR) ratio.
This paper

- Examines the effect of a regulatory intervention in the context of Indian equity markets.

- **The intervention**: Charge fees/penalise traders with high orders to trades (OTR) ratio.

- Unique: same intervention – OTR fee, same target market, multiple episodes, by different regulatory agencies.

- **The question**:
 1. Was there a stated market failure?
 2. Was there a stated target outcome?
 3. Did the intervention achieve the target outcome?
 4. Did the intervention address the market failure?
 5. Did the intervention have unintended consequences?
OTR fee: The rationale

- **Intended target outcome**: Reduce the high levels of OTR.
OTR fee: The rationale

- **Intended target outcome**: Reduce the high levels of OTR.
- **Market failure**: Negative externality by way of
 1. Increased load on trading infrastructure.
 In our market, load on clearing infrastructure and possible systemic effects (example: Emkay fat-finger trade on Nifty, 2012)

- **Solution**: Impose a fee if the OTR threshold.

- **Outcome**: Higher costs on order placement → lower number of orders.

- **Unexpected outcome**: Higher cost → lower liquidity provisioning.

- **Answer to how the otr fee impacts the market is complicated.**
OTR fee: The rationale

- **Intended target outcome**: Reduce the high levels of OTR.

- **Market failure**: Negative externality by way of
 1. Increased load on trading infrastructure.
 In our market, load on clearing infrastructure and possible systemic effects (example: Emkay fat-finger trade on Nifty, 2012)
 2. Orders without trade could be unproductive:
 2.1 They increase latency in overall order placement and execution;
 2.2 Spoof information about the market.

- Solution: Impose a fee if the OTR > threshold.

- Outcome: Higher costs on order placement → lower number of orders.

- Unexpected outcome: Higher cost → lower liquidity provisioning.

- Answer to how the otr fee impacts the market is complicated.
OTR fee: The rationale

- **Intended target outcome**: Reduce the high levels of OTR.

- **Market failure**: Negative externality by way of
 1. Increased load on trading infrastructure.
 In our market, load on clearing infrastructure and possible systemic effects (example: Emkay fat-finger trade on Nifty, 2012)
 2. Orders without trade could be unproductive:
 2.1 They increase latency in overall order placement and execution;
 2.2 Spoof information about the market.

- **Solution**: Impose a fee if the OTR > threshold.

- **Outcome**: Higher costs on order placement → lower number of orders.

- **Unexpected outcome**: Higher cost → lower liquidity provisioning.
OTR fee: The rationale

- **Intended target outcome**: Reduce the high levels of OTR.

- **Market failure**: Negative externality by way of
 1. Increased load on trading infrastructure.
 In our market, load on clearing infrastructure and possible systemic effects (example: Emkay fat-finger trade on Nifty, 2012)
 2. Orders without trade could be unproductive:
 2.1 They increase latency in overall order placement and execution;
 2.2 Spoof information about the market.

- **Solution**: Impose a fee if the OTR > threshold.

- **Outcome**: Higher costs on order placement → lower number of orders.

- **Unexpected outcome**: Higher cost → lower liquidity provisioning.

- Answer to how the OTR fee impacts the market is complicated.
Empirical studies on the impact

 Objective: appears to be public interest concerns.

- India had two sets of episodes:
 1. NSE implements an OTR fee in 2009 to reduce load on its infrastructure. (Removed a year later, in 2010.)
 2. SEBI implements the fee in 2012 to address public interest concerns.

- Research opportunity: Possible opportunity to understand if the objectives matter?
 How does the regulatory intervention work in an emerging economy with different standards of regulatory enforcement and governance?
Growth of algorithmic trading in India and the interventions

- Fee levied on algo orders
- Fee doubled

Key dates:
- 2009-10-01: Fee levied
- 2010-07-01: Fee reduced
- 2012-07-02: Fee levied on algo orders
- 2013-05-27: Fee doubled
Fee implementation

- **2009-10**: Fee applied uniformly across all market participants and order types.
Fee implementation

- **2009-10**: Fee applied uniformly across all market participants and order types.

- **2012-13**: Fee applicable on algo orders only on all order types with the following exemptions:
 1. Orders within +/-1% LTP price limits not included.
 2. Members covered under the LES excluded.
 3. Additional penalty of no trading in the first 15 minutes on the next trading day if OTR > 500.

Fee computed at a member level on a daily basis.
Fee only on derivatives.
Fee implementation

- **2009-10**: Fee applied uniformly across all market participants and order types.

- **2012-13**: Fee applicable on algo orders only on all order types with the following exemptions:
 1. Orders within +/-1% LTP price limits not included.

- Fee computed at a member level on a daily basis.

- Fee only on derivatives.
Fee implementation

- **2009-10**: Fee applied uniformly across all market participants and order types.

- **2012-13**: Fee applicable on algo orders only on all order types with the following exemptions:
 1. Orders within +/-1% LTP price limits not included.
 2. Members covered under the LES excluded.
Fee implementation

▶ **2009-10**: Fee applied uniformly across all market participants and order types.

▶ **2012-13**: Fee applicable on algo orders only on all order types with the following exemptions:
 1. Orders within +/-1% LTP price limits not included.
 2. Members covered under the LES excluded.
 3. Additional penalty of no trading in the first 15 minutes on the next trading day if OTR > 500.

▶ Fee computed at a member level on a daily basis.

▶ Fee **only** on derivatives.
Data

- **Focus:** 1st and the 3rd event
- Methodology: Event study, difference-in-difference regressions.
- Event window: Three months around implementation.
- Dates:
 a) Pre event: Jul - Sep 2009
 b) Post event: Oct - Dec 2009
 2. Event 2: Fee hike on SEBI direction on July 2, 2012
 a) Pre event: Apr - Jun 2012
 b) Post event: Jul - Sep 2012
- Sample: All securities traded on NSE equity segment; Near month single stock futures.
- Data type and frequency: Tick by tick orders and trades data, with flags identifying if an order or a trade is AT or non AT, and trader category.
 Flag on type of order event: entry, modification or cancellation.
Endogeneity issue?

- In both the events, the fee **only** implemented on the derivatives segment.
Endogeneity issue?

- In both the events, the fee only implemented on the derivatives segment.
- Use cash market as control?
Endogeneity issue?

- In both the events, the fee only implemented on the derivatives segment.
- Use cash market as control? Perhaps not.
Endogeneity issue?

- In both the events, the fee **only** implemented on the derivatives segment.
- Use cash market as control? **Perhaps not.**
- Impact likely on cash market after the fee imposition:
Endogeneity issue?

- In both the events, the fee only implemented on the derivatives segment.
- Use cash market as control? **Perhaps not.**
- Impact likely on cash market after the fee imposition:
 1. Higher cost of trading on derivatives turns traders to the cash market (Brunnermeier and Pederson, 2009).
 Higher trading on the cash markets?
Endogeneity issue?

- In both the events, the fee \textit{only} implemented on the derivatives segment.

- Use cash market as control? \textbf{Perhaps not}.

- Impact likely on cash market after the fee imposition:
 1. Higher cost of trading on derivatives turns traders to the cash market (Brunnermeier and Pederson, 2009).
 2. Both markets connected by the force of arbitrage. Reduced trading on cash market?
Endogeneity issue?

- In both the events, the fee **only** implemented on the derivatives segment.

- Use cash market as control? **Perhaps not**.

- Impact likely on cash market after the fee imposition:
 1. Higher cost of trading on derivatives turns traders to the cash market (Brunnermeier and Pederson, 2009).
 2. Both markets connected by the force of arbitrage.

- Need a different set of controls.
 Our candidate: underlying stocks as treated and matched stocks (equity spot) as controls.

- Difference-in-difference regressions on both sets of treated-control samples: coefficients should tell the same story.
Research design we use
Causal identification within a difference-in-difference setting

- Eligibility criteria for selection of securities for derivatives trading:
 1. Stock should be in the top 500 stocks in terms of average daily market capitalisation and average daily traded value in the previous six months on a rolling basis.
 2. The stock's median quarter-sigma order size over the last six months shall be not less than Rs. 10 lakhs.
 3. The market wide position limit (determined by number of shares held by non-promoters) in the stock shall not be less than Rs. 300 crores.

- Some non-derivatives stocks may not meet the above criteria just near the above threshold(s).

- We exploit this setting, and match the non-derivative stocks with derivative stock for each event.
Causal identification within a difference-in-difference setting

- Eligibility criteria for selection of securities for derivatives trading:
 1. Stock should be in the top 500 stocks in terms of average *daily market capitalisation* and *average daily traded value* in the previous six months on a rolling basis.
 2. The stock’s median quarter-sigma *order size* over the last six months shall be not less than Rs. 10 lakhs.
 3. The *market wide position limit* (determined by number of shares held by non-promoters) in the stock shall not be less than Rs. 300 crores.
Causal identification within a difference-in-difference setting

- Eligibility criteria for selection of securities for derivatives trading:
 1. Stock should be in the top 500 stocks in terms of average daily market capitalisation and average daily traded value in the previous six months on a rolling basis.
 2. The stock’s median quarter-sigma order size over the last six months shall be not less than Rs. 10 lakhs.
 3. The market wide position limit (determined by number of shares held by non-promoters) in the stock shall not be less than Rs. 300 crores.

- Some non-derivatives stocks may not meet the above criteria just near the above threshold(s).
Causal identification within a difference-in-difference setting

- Eligibility criteria for selection of securities for derivatives trading:
 1. Stock should be in the top 500 stocks in terms of average daily market capitalisation and average daily traded value in the previous six months on a rolling basis.
 2. The stock’s median quarter-sigma order size over the last six months shall be not less than Rs. 10 lakhs.
 3. The market wide position limit (determined by number of shares held by non-promoters) in the stock shall not be less than Rs. 300 crores.

- Some non-derivatives stocks may not meet the above criteria just near the above threshold(s).

- We exploit this setting, and match the non-derivative stocks with derivative stock for each event.
Obtaining matched firms

- Define
 - ‘Treated’: stocks with derivatives contract within the event window.
 - ‘Control’: stocks without derivatives contract.
 - Leave out the firms that got **excluded** from derivatives trading within the event window.

- Matching stocks using data **before** the fee implementation:
 - **Distance** measure: Propensity scores.
 - **Covariates**: $\log(\text{average daily market cap})$, price, turnover, number of trades and percentage of floating stock.

- Estimate a logit model.

- One-to-one matching on estimated propensity scores using the **nearest neighbor** algorithm (without replacement), and a tight caliper of **0.05**.
Difference-in-difference equations

- Use the treated and control (matched) securities and estimate the following equation:

\[
\text{MEASURE}_{i,t} = \alpha + \beta_1 \times \text{TREATED}_i + \beta_2 \times \text{FEEDUMMY}_{t} + \\
\beta_3 \times \text{TREATED}_i \times \text{FEEDUMMY}_{t} + \\
\beta_4 \times \text{MCAP}_{i,t} + \beta_5 \times \text{INVERSE-PRICE}_{i,t} + \\
\beta_6 \times \text{NIFTY-VOL}_{t} + \epsilon_{i,t}
\]

- **Hypothesis**: If the event did not have any impact on the level of OTR or market quality, \(\beta_3 = 0 \).
Difference-in-difference equations

- Use the treated and control (matched) securities and estimate the following equation:

\[
\text{MEASURE}_{i,t} = \alpha + \beta_1 \times \text{TREATED}_i + \beta_2 \times \text{FEEDUMMY}_{t} + \\
\beta_3 \times \text{TREATED}_i \times \text{FEEDUMMY}_{t} + \\
\beta_4 \times \text{MCAP}_{i,t} + \beta_5 \times \text{INVERSE-PRICE}_{i,t} + \\
\beta_6 \times \text{NIFTY-VOL}_{t} + \epsilon_{i,t}
\]

- **Hypothesis**: If the event did not have any impact on the level of OTR or market quality, \(\beta_3 = 0 \).

- We estimate two sets of regressions:
 1. To determine the impact on cash market: DiD regression using cash market data.
 2. To determine the impact on futures market using these:
 - Regression 1: (treated) futures and (control) underlying stocks on cash market.
 - Regression 2: (treated) stocks (underlying of the futures) and (control, matched) stocks.

- Measure are OTR and market quality (liquidity, efficiency).
Measurement
OTR measures

- At an order level for each stock, compute
 1. \[\text{OTR} = \frac{\text{Number of orders events}}{1 + \text{Number of trades}} \]
 2. \[\text{OTR intensity} = \frac{\text{OTR}}{\text{Average time between modifications}} \]
 This is the value weighted average OTR for the day.

- At the level of each stock: Total number of messages on a stock to total number of trades on the stock within a day.
Market quality measures

- **Liquidity:**
 Qspread, Impact cost (at two different sizes), Depth (in INR) at the best price and at the top five, Amihud’s illiquidity measure.

- **Efficiency:**
 Variance ratio (ten minutes to five minutes), returns volatility, impact cost volatility (at two different sizes).
Results
Event 1: DiD regression

\[OTR_{i,t} = \alpha + \beta_1 \times TREATED_i + \beta_2 \times FEE_t + \]
\[\beta_3 \times TREATED_i \times FEE_t + \]
\[\beta_4 \times MCAP_{i,t} + \beta_5 \times INVERSE-PRICE_{i,t} + \]
\[\beta_6 \times NIFTY-VOL_t + \epsilon_{i,t} \]
Event 1, impact on OTR

<table>
<thead>
<tr>
<th></th>
<th>SSF-Spot(treated)</th>
<th>Spot(treated)-Spot(control)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VWTD OTR NAIVE</td>
<td>VWTD OTR NAIVE</td>
</tr>
<tr>
<td>Treated × Fee</td>
<td>-1.74 -6.04</td>
<td>1.18 0.33</td>
</tr>
<tr>
<td></td>
<td>(-5.19) (-5.03)</td>
<td>(5.27) (7.14)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.25 0.57</td>
<td>0.46 0.15</td>
</tr>
<tr>
<td>Treated units</td>
<td>37 37</td>
<td>37 37</td>
</tr>
<tr>
<td>Control units</td>
<td>37 37</td>
<td>36 36</td>
</tr>
<tr>
<td># of obs.</td>
<td>7738 7738</td>
<td>8208 8208</td>
</tr>
</tbody>
</table>
Event 2, impact on OTR

<table>
<thead>
<tr>
<th></th>
<th>SSF-Spot(treated)</th>
<th>Spot(treated)-Spot(control)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VWtd OTR</td>
<td>OTR naive</td>
</tr>
<tr>
<td>Treated × Fee</td>
<td>-0.106</td>
<td>31.504</td>
</tr>
<tr>
<td></td>
<td>(-0.29)</td>
<td>(2.63)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.19</td>
<td>0.13</td>
</tr>
<tr>
<td>Treated units</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>Control units</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td># of obs.</td>
<td>9030</td>
<td>9030</td>
</tr>
</tbody>
</table>
Market quality
DiD on market quality

\[\text{Market quality}_{i,t} = \alpha + \beta_1 \times \text{TREATED}_i + \beta_2 \times \text{FEE}_t + \]
\[\beta_3 \times \text{TREATED}_i \times \text{FEE}_t + \]
\[\beta_4 \times \text{MCAP}_{i,t} + \beta_5 \times \text{INVERSE-PRICE}_{i,t} + \]
\[\beta_6 \times \text{NIFTY-VOL}_t + \epsilon_{i,t} \]
Event 1, Liquidity impact

<table>
<thead>
<tr>
<th></th>
<th>SPREAD</th>
<th>IC(_{25k})</th>
<th>IC(_{250k})</th>
<th>1DEPTH</th>
<th>5DEPTH</th>
<th>ILLIQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: SSF-Spot(Treated)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treated × Fee</td>
<td>-0.05</td>
<td>-0.05</td>
<td>-0.04</td>
<td>-0.055</td>
<td>-0.06225</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(-6.87)</td>
<td>(-6.17)</td>
<td>(-4.11)</td>
<td>(-1.16)</td>
<td>(-1.03)</td>
<td>(-4.04)</td>
</tr>
<tr>
<td>R(^2)</td>
<td>0.53</td>
<td>0.48</td>
<td>0.29</td>
<td>0.76</td>
<td>0.73</td>
<td>0.1</td>
</tr>
<tr>
<td>Treated units</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Control units</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td># of obs</td>
<td>7738</td>
<td>7738</td>
<td>7738</td>
<td>7738</td>
<td>7738</td>
<td>7738</td>
</tr>
<tr>
<td>Panel B: Spot(Treated)-Spot(Control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treated × Fee</td>
<td>-0.002</td>
<td>-0.002</td>
<td>-0.001</td>
<td>0.123</td>
<td>0.112</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(-0.40)</td>
<td>(-0.29)</td>
<td>(-0.04)</td>
<td>(2.29)</td>
<td>(1.89)</td>
<td>(-0.60)</td>
</tr>
<tr>
<td>R(^2)</td>
<td>0.03</td>
<td>0.05</td>
<td>0.08</td>
<td>0.46</td>
<td>0.48</td>
<td>0.03</td>
</tr>
<tr>
<td>Treated units</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Control units</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td># of obs</td>
<td>8208</td>
<td>8208</td>
<td>8193</td>
<td>8208</td>
<td>8208</td>
<td>8207</td>
</tr>
</tbody>
</table>
Event 2, Liquidity impact

Panel A: SSF-Spot(treated)

<table>
<thead>
<tr>
<th>Spread</th>
<th>IC_{25k}</th>
<th>IC_{250k}</th>
<th>1Dpth</th>
<th>5Dpth</th>
<th>Illiq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated × Fee</td>
<td>-0.004</td>
<td>-0.001</td>
<td>0.017</td>
<td>-0.133</td>
<td>-0.094</td>
</tr>
<tr>
<td></td>
<td>(-0.494)</td>
<td>(-0.110)</td>
<td>(1.654)</td>
<td>(-2.623)</td>
<td>(-1.714)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.32</td>
<td>0.24</td>
<td>0.09</td>
<td>0.71</td>
<td>0.62</td>
</tr>
<tr>
<td>Treated</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>Control units</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td># of obs.</td>
<td>9030</td>
<td>9030</td>
<td>9030</td>
<td>9030</td>
<td>9030</td>
</tr>
</tbody>
</table>

Panel B: Spot(treated)-Spot(control)

Treated × Fee	0	0	0	0.054	0.036	0
R^2	0.380	0.230	0.160	0.490	0.420	0.062
Treated units	47	47	47	47	47	47
Control units	45	45	45	45	45	45
# of obs.	10233	10233	10223	10233	10233	10233
Event 1, Efficiency impact

| | σ_r | $\sigma_{IC,25k}$ | $\sigma_{IC,250k}$ | $|VR - 1|$ |
|----------------------|------------|--------------------|--------------------|-----------|
| **Panel A: SSF-Spot(Treated)** | | | | |
| Treated \times Fee | -6.038 | -0.052 | -0.043 | -0.005 |
| | (-3.80) | (-5.72) | (-4.26) | (-0.64) |
| R^2 | 0.35 | 0.27 | 0.19 | 0.02 |
| Treated units | 37 | 37 | 37 | 37 |
| Control units | 37 | 37 | 37 | 37 |
| # of obs | 7738 | 7738 | 7738 | 7730 |
| **Panel B: Spot(treated)-Spot(control)** | | | | |
| Treated \times Fee | 4.157 | -0.025 | -0.012 | -0.008 |
| | (2.47) | (-1.02) | (-1.02) | (-1.13) |
| R^2 | 0.24 | 0.040 | 0.07 | 0.01 |
| Treated units | 37 | 37 | 37 | 37 |
| Control units | 36 | 36 | 36 | 36 |
| # of obs | 8203 | 8208 | 8192 | 8135 |
Event 2, Efficiency impact

| | σ_r | $\sigma_{IC,25k}$ | $\sigma_{IC,250k}$ | $|VR - 1|$ |
|----------------------|------------|--------------------|---------------------|-----------|
| **Panel A: SSF-Spot(treated)** | | | | |
| Treated \times Fee | -6.066 | 0.017 | 0.022 | -0.014 |
| | -3.185 | 2.017 | 2.297 | -1.561 |
| R^2 | 0.30 | 0.15 | 0.02 | 0.03 |
| Treated units | 47 | 47 | 47 | 47 |
| Control units | 47 | 47 | 47 | 47 |
| # of obs. | 8964 | 9030 | 9030 | 8782 |
| **Panel B: Spot(treated)-Spot(control)** | | | | |
| Treated \times Fee | -2.355 | 0.005 | **0.029** | 0.012 |
| | -1.996 | 0.823 | 2.796 | 1.637 |
| R^2 | 0.22 | 0.04 | 0.03 | 0.02 |
| Treated units | 47 | 47 | 47 | 47 |
| Control units | 45 | 45 | 45 | 45 |
| # of obs. | 10233 | 10233 | 10218 | 10226 |
What was the impact of the fee on the OTR?
Event 1 was effective in reducing the OTR – both the measures are lower for the futures. It is higher for the underlying spot compared to their control, which suggests that trading shifted. (Yet to be done: what happened to the volumes at BSE?)
Summary

What was the impact of the fee on the OTR?
Event 1 was effective in reducing the OTR – both the measures are lower for the futures. It is higher for the underlying spot compared to their control, which suggests that trading shifted.
(Yet to be done: what happened to the volumes at BSE?)
Event 2 was not as effective: the averages appear untouched; some evidence that it increased.
Preliminary research suggests that it may have increased at the touch but decreased away from the touch rightarrow design of the fee.
Summary, contd.

- What was the impact of the fee on the market liquidity? Event 1 led to reduced liquidity – higher impact cost for all sizes. Event 2 had little impact. The only place where any evidence shows up is in the depth at the touch.
What was the impact of the fee on the market liquidity?
Event 1 led to reduced liquidity – higher impact cost for all sizes.
Event 2 had little impact. The only place where any evidence shows up is in the depth at the touch.

What was the impact of the fee on market efficiency?
Event 1 led to reduced liquidity risk as volatility of the impact cost. (Cautionary note: volatility in the market was higher in the period after the fee was imposed.)
Event 2 had little impact. Some evidence that the liquidity risk has increased at the higher order sizes. Has the liquidity become less stable at higher orders?
Next steps
Research question going forward

- Analyse the impact of the fee for the 2010 and the 2013 event as well. Does the market behave as expected?
- Link the higher levels of AT in the 2012 and 2013 to how we should think about the impact of fee on market quality.
- Shift explicitly to behaviour of traders when there is regulatory intervention. How does this response change when there is clarity of the regulatory objective vs. not?
Thank you

Comments / Questions?

http://www.ifrogs.org/