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Abstract

Ultra High Frequency (UHF) quotes and trades are examined in high resolution. Pat-

terns which do not correspond to plausible market activity as in Brownlees and Gallo

(2006) are observed. Non-microstructure noise is identified and diagnostic methods are

evaluated. Extending Barndorff-Nielsen et al. (2009), a paradigm of data handling that

synthesizes statistical technique and limit order book modeling is developed. Empirical

evidence from the NASDAQ 100 demonstrates that removal of non-microstructure noise

from the limit order book robustifies estimation across techniques and levels of market

depth.

KEYWORDS: Robustification, Data Handling, Limit Order Book, Model Fit, Estima-

tion, Non-Microstructure noise, Ultra High Frequency.

THE MOTIVATION behind this work is to provide researchers in market microstructure

a paradigm with which to better understand the information content of quote and trade level

Ultra High frequency (UHF) data. In this context, it presents focused data techniques designed

to improve parametric estimation in empirical microstructure research.

Market microstructure data consists of trade and quotes, signals and outliers. Our focus is

on the information content of quotes. We observe in UHF data that white noise emanates not
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only from outliers but also from specific stochastic processes. This paper demonstrates how

model fit can be enhanced by reduction in such white noise without resorting to any model

re-specification.

Invoking Brownlees and Gallo (2006), we specify that in auction markets quotes that par-

ticipate in the auction in search of a trade are considered to be plausible market activity. Quotes

that do not comprise plausible market activity are termed non-microstructure noise. Identifying

and removing those quotes that do not represent plausible market activity are seen to be key to

improved estimation in practice.

This paper makes three specific contributions to the existing UHF empirical microstructure

literature. First, it shows that in limit order markets there exist stochastic noise processes in

addition to and different from microstructure noise. Secondly, it proposes a new paradigm to

identify these noise processes and remove them. Third, it empirically demonstrates how the

application of this paradigm results in vastly improved parametric estimation.

The remainder of this paper is divided into four parts. The next section analytically explains

the formulation of non-microstructure noise. Section 2 presents a three stage paradigm to

identify and treat non-microstructure noise. An empirical demonstration of the efficacy of this

paradigm is presented in section 3 via the estimation of Realised Kernels (RK) in the presence

of non-microstructure noise. The final section provides a summary and conclusions.

1 Non-Microstructure Noise

Microstructure Noise (MN) may be viewed as a gauge-tolerance equivalent. It captures a va-

riety of frictions inherent in the trading process, major among which are the bid-ask bounce,

the discreteness of price changes, differences in trade sizes, the informational content of price

changes, the gradual response of prices to a block trade, strategic components of the order flow,

inventory control effects, processing costs, asymmetric information, auto-correlation in the or-

der flow, stale prices, power laws, order cancellations, relative prices and relative depth profile,

all of which have been dealt with in the existing literature. (Ait-Sahalia and Yu (2009), Jacod

et al. (2017), Gould et al. (2013))
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In contrast, non-microstructure noise (NMN) arises from sources different from friction in

the trading process. Principal sources of non-microstructure noise are gaps in market design

and incidences of systematic quote stuffing and spoofing in high frequency markets. Such noise

can potentially distort the information content and statistical properties of high frequency data.

It is first examined from the perspective of aggregate effects in double auction limit order, and

conjectures the possible agent behaviour that leads into such effects.

1.1 Stochastic price and noise processes

Let the log price of an asset at time t, Yt obey a semimartingale process on some filtered prob-

ability space (Ω,F , (Ft)t≥0 ,P). We consider the case where Y is a Brownian Semimartingale

and a single period [0,T]. In the most general form Y is given as

Yt =

ˆ t

0
audu+

ˆ t

0
σudWu +α

ˆ t

0
σvdWv (1)

where au is a predictable locally bounded drift, σuand σvare a cadlag volatility process,

and Wuand Wv are Brownian motion. α = 1 if V is mixed up with U, α = 0 otherwise. The

intuition is that V participates in the price process of an asset only if it is mixed up with U. In

other instances it does not participate in the price process, although it is involved in the noisy

observation as shown in (2). Note that in the above we could also work with a process that is

BSMJ, Poisson or Hawkes process.

Xi j is a noisy observation of Yi j .

Xi j = Yi j +Ui j +Vi j (2)

The evolution of Y is through X as an OU process. U is not independent of Y i.e (Ui0,Ui1, ...,Uin)

are mutually independent but jointly dependent on Y. But U and V are independent. U repre-

sents the origins of MN and V that of NMN.

We assume U and V as noise but from different independent processes. U results from an

Ornstein-Ulhenbeck (OU) process and V from an OU or Geometric Brownian Motion (GBM).

Our object of interest is V . V may evolve independently and simply add up or at times it may
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get mixed up with U. We assume E(Vi j) = 0 , and Var(Vi j) =ω
2 . However, at times in absence

of V , there could also exist a white noise component from U (as we show later) as a result of

its construction.

1.1.1 V evolves independently

When V independently adds up, it evolves from the following stochastic differential equations

(SDE) (refer a similar treatment in Wilkinson (2010)):

dV = adt +σdW2v (3)

1.1.2 V gets mixed up 1

When V remains independent but gets mixed up, let us start with the following SDE,

dx(t) = ax(t)dt +σux(t)dWut +σvdWvt (4)

φt = exp((a−(1/2)σ2
v )t +σvWvt) (5)

(5) above is a geometric Brownian motion. Using integration by parts for Ito processes,

d(x(t)φ−1
t ) = x(t)φ−1

t ((−a+σ2
v )dt +σvdWvt)

+φ−1
t (ax(t)dt +σudWut +σvdWvt)− x(t)φ−1

t σ2
v dt

= σuφ
−1
t dWut (6)

Since the two processes U and V are independent, the co-variance of the two Ito processes

x(t) and φ−1
t [x(t), φ

−1
t ]t = −σ

2
v

´ t
0 x(s)φ−1

s ds .

1This solution is attributed to Nawaf Bou-Rabee, Department of Mathematical Sciences, Rutgers University
Camden.
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Now integrating what remains of (6) we get the solution as given below if initial condition

is x0 :

x(t) = φt(x0+σu

ˆ t

0
φ−1

s dWus) (7)

1.1.3 Noise in trade price series

The above two scenarios represent datasets that comprise of both trades and quotes or quotes

alone. In a dataset that comprises only trades, V should be 0 as we do not expect non-

microstructure noise in such data. However, even in such datasets, it is seen that removal

of data improves the results. This phenomenon may be understood if one models the trades as

evolving from an OU process. As we show below the OU process is the solution to an SDE.

And the solution itself can be shown to comprise of the OU noise and a white noise. Removal

of the white noise may possibly improve volatility calculations. Let the initial conditions be

that ξOU(0) is a gaussian random variable with mean 0 and variance (2τ)−1. The OU noise is

solution of the following SDE:

dξOU/dt = (−1/τ)ξOU(t)+ (1/τ)ξw(t) (8)

The solution (from San Miguel and Toral (2000) ) to the above is given below, where H is a

gaussian random process and can be shown to be a white noise:

ξOU(t + h) = ξOU(t)e−h/τ +Hh(t)

Hh(t) = τ−1e−(t+h)/τ
ˆ t+h

t
dsξw(s)es/τ (9)

Though intuitive there may be no motivation in general to clean a dataset of trades for

outliers and noise. However, the above result indicates that conceptually, there may exist a case

to remove white noise from trade price series as well.
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Identification of non-microstructure noise

Quotes that contribute to non-microstructure noise can be identified by three indicators. First,

if the quotes do not eventually participate in the auction. This is from Brownlees and Gallo and

we shall develop it further in section 1.2 and section 2. Second, by a measure of the deviation

of the quote from the center of the distribution of quotes (measured by the Euclidean distance

of the quote from a measure of the centroid of the quote distribution). An established technique

to identify outliers, this is further extended to handle outliers and noise processes in section

2. The third is from observation of visual patterns in quotes. Figure 1 gives the plots for raw

trades and quotes. The arrows indicate stochastic processes and outliers that together represent

non-microstructure noise. Although visual identification does not help in the removal of noise,

it does confirm the presence of noise. In Figure 1, we observe patterns along the price axis

and time axis. Some patterns are closer to the trade signal and auction process and others are

clearly distant.

1.2 ’Plausible market activity’ and agent behaviour

In order to create a construct that identifies what constitutes plausible market activity in double

auction limit order markets, we posit that quoting activity in such markets can be represented

by queues that are refreshed at every tick. This refresh is based on a price and time priority.

The time priority comes into play for quotes with identical prices.

Technically any quote that is not “Best Bid” or “Best Offer” does not have an opportunity

to trade or get executed. Conversely, every quote that converts into a trade has to necessarily be

the best bid/offer, even if instantaneously. However, the quoting pattern of agents in the auction

is clearly conditional on the queue, the depth (quantity on bid and ask side and their distance),

the arrival rate of quotes and service rate (execution of trades). Hence, quotes beyond best bid

and ask can also participate in the auction.

When quotes are placed further from best bid/offer it indicates an expectation of higher

return. On occasion, it could also signal an informed trader. The agent necessarily trades

off this expectation with the risk of non-execution. In the event of non-execution the agent

is expected to modify his bid/offer or cancel and place a new order. There should exist a
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possibility for the new order or modified order to move into the best bid/offer position.

Two scenarios emerge, any of which could unfold during the bid-ask bounce. First, that the

agent holds their return expectation and the market players on the opposite side move to their

position. This scenario is possible if the current position of the agent in the demand/supply

curve is crossing the price-quantity schedule of agents on opposite side or the stochastic evo-

lution of their price bids/asks over time. Second, the agent moves along their price-quantity

schedule or stochastically evolving price over time and offers the best bid/offer matching or

closer to the opposite best offer/bid.

Ignoring the incidence of quote stuffing and spoofing where the intent to trade is ques-

tionable, there exist quotes where the demand and supply schedules are distant from the trade

signal and inflexible enough to not participate in the auction or price process. Some exceptions

can exist where quoting activity commingles with microstructure noise and appears to jointly

participate in the auction process. These are observable during phenomena like early hour trade

volatility, block deals and jumps.

Our purpose is not to provide an economic model for outliers, but to distinguish the be-

haviour of quotes that participate in the auction from those that do not. Let {Ni(t), tε[0,∞)}

be a stochastic process, Ni(t), ε{0,1, ...} representing the number of discreet ticks in which an

order has been placed in the exchange (double auction) by the ith agent upto time t. Ain(tin)

be the amount demanded (or supplied) by agent i at his nth tick that occurs at time tin. The

composite process,

Xi(t) =
Ni(t)∑
n=1

Ain(tin) (10)

represents the total amount demanded / supplied by the ith agent in the interval [0,t=T].2In our

model of limit order markets, agents are classified according to those whose behaviour repre-

sents market activity and those whose do not. For the former, we continue with the above nota-

tion, whereas for the others we introduce the subscript ’nmn’ (representing non-microstructre

noise).

Xnmni(t) =
Ni(t)∑
n=1

Anmnin(tin) (11)

2This representation is similar to Garman (1976)
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The two groups can be distinguished in two aspects. Firstly, there is an inelasticity between

the stochastically evolving price of the asset (Yt) and quantity (demanded/supplied) Xnmni(t) in

case of the NMN group. While theoretically an auction may be possible using the price-quantity

schedules of the NMN group, practically this group does not participate in the auction because

the market liquidity prevents such scenarios from emerging. Secondly, the NMN group seems

to be demanding a return far higher than what the dominant agents in the market are prepared

to offer. If we denote the stochastic asset price of NMN group by Ynmnt , then there exists the

following condition at all times,

|Yt −Ynmnt | > 0 (12)

We use the above intuitions to identify and remove NMN in the next section.

2 A Paradigm to handle UHF data in presence of NMN

Though the existing literature, Brownlees and Gallo (2006) and Barndorff-Nielsen et al. (2009)

deals with data in a comprehensive manner, the approach presented here is additionally diag-

nostic in nature. Figure 2 illustrates our intent with the new paradigm. The first plot gives

the raw data for MSFT (NASDAQ, 30-Oct-2017), the second plot is the data after it has been

handled with BNHLS method and the third is the new paradigm.

The data is restricted to the general market hours of 9.30 am to 4.00 pm. Pre-preparation of

data, specific to the dataset, if required, can be done at this stage. For trades only start directly

with step 3.

2.1 Reconstructing the limit order book to identify and remove NMN

This step, called ’LOBclean’ involves reconstruction of the limit order book. It involves recre-

ating the auction at every tick, identifying the best bid, best ask and recording all the messages

(add orders, trade executions, deletions, modifications etc) in the book. Specifically for ’LOB-

clean’ we need to identify the price level at which every quote is placed and its trajectory in the

book before it is cancelled, modified or executed. The trajectory is identified in terms of the

price level at which it exists at every tick while it is still in the book.
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Figure 1: Plots of trade and quotes from NASDAQ, 30-Oct-2017. Price in USD and time in
hours Trades represented in blue, bids in green and ask in red. Arrows in red point to trades and
arrows in green to the quotes. Although the activity on bid and ask sides can be symmetrical at
times, they are more often different, suggesting different stochastic processes in action.
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The next step is the application of the concept of plausible market activity to the data. Using

a conservative definition (based on observation from a number of experiments), a quote that

begins its journey in the book beyond the tenth price level and never comes within the top ten

price levels is classified as NMN. Once identified, such quotes are removed from the dataset.

We note that even with a conservative definition, the LOBclean step is a highly effective method

to remove non-microstructure noise as we shall see in the empirical illustration in section 3.

This price level could be revised if the researcher needs to aggressively clean out data that are

distant from the best bid and best ask.

Price levels in the limit order book

The distance of a quote from the best bid /offer is given in terms of the price levels. The price

levels in a limit order book are a natural distance classifier. This intrinsic scale is used to check

for participation in market activity. We assume that the intent of every quote is to result in a

trade. In limit order markets, quotes represent a trade off between expected returns and the

risk of not getting traded. If a quote does not participate in the auctioning process, it does not

represent plausible market activity as noted in section 1 above.

Impact of an aggressive definition for LOBclean

Beyond a particular level of data removal, the risk of information loss through removal of U

starts to emerge. To illustrate the impact of the definition for market activity, in one experiment

we defined as noise the quotes placed beyond fifth price level. We also did not take cognisance

of whether the quote moved into lower price levels or got traded. This is an example of an

aggressive stance. Table I gives the results for AAPL (NASDAQ) data for 30-Oct-2017 and

contrasts with the definition we have offered in step 1 above. The aggressive criteria classifies

88% of quotes as not representing market activity. This set also includes 50% of quotes that

result into trades. The conservative criteria identifies 3.9% of quotes as noise.
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Table I : APPL (NASDAQ) LOB 5th price level without recovery vs 10th price level with

recovery

Message NASDAQ
Specifica-

tion

Message
type

Number
of Raw

Messages

Quotes
that
start

beyond
5th level

% Quotes
that never
enter the
10 best

price levels

%

A Add Order
Message

Quote 517109 455017 87.99 19679 3.81

F Add Order
Message

Quote 4317 4307 99.77 2544 58.93

U Order
Replace
Message

Quote -
modifi-
cation

46493 39738 85.47 115 0.25

Total 567919 499062 87.88 22338 3.93

2.2 Separating the bid and ask price series to identify the nature of dis-

tributions

Bids and asks represent different stochastic processes. The two price series may be driven

by non-identical influence from the fundamental price signal, microstructure noise, intraday

volatility and asynchronous price revisions. In step 3, we present a bouquet of methods to

remove NMN. Some of the methods are more effective in case of normal distributions and

others in case of non-normal distributions. A QQ plot, that is a scatter plot between the data

and a theoretical normal distribution, is a useful tool to check normality. The QQ plot can be

used to identify non-normal distribution and chose the appropriate method in step 3. Further, it

helps in deciding the trade off between efficiency gain and data removal.

The timestamp correction step is an important step for several studies. Essentially, the raw

data consists of a number of datapoints bearing the same time stamp. Following BNHLS we

have taken the median of the bids and asks to represent the bid and ask for the timestamp. Some

of the other options have been outlined in Barndorff-Nielsen et al. (2009). To these alternatives,

we would recommend future studies to explore choosing the incoming quote with the highest

bid or lowest ask to represent the bid and ask at that timestamp.

Since all modern datasets clearly identify the bid and ask quotes, we can separate the two

to form independent series. This is an important preparatory step for step 3. While we attempt
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to identify the center of the data in step 3 and clean outliers and noise that are farthest from the

center, separate bid and ask series can help because the center of both these datasets is different.

In case, the study needs a single price series, we combine the two again after step 3.

2.3 Noise identification and removal based on distance from center

The bid and ask price series are handled separately in this step. We choose from the solu-

tion set comprising MADMean, BNHLS, MADMed for symmetric distributions and Sn, Qn,

ScaleTau2 for assymetric distributions. The methods for symmetric distributions are based

on mean absolute deviation or median absolute deviation or a combination of the two. The

methods for assymetric distributions selected in the solution set have been designed for robust

estimations even in case of assymetric distributions. An aspect that distinguishes the four meth-

ods we include into the basket for UHF financial data is the way we handle the methods. Since

these methods are used upon the separated bid and ask price series, we do not treat the data

locally (that is, in a neighbourhood of datapoints) and hence there is no subjective decisions

taken on the basis of the dataset.

Let pi(i = 1toN) be an ordered tick-by-tick price series.

2.3.1 Methods for symmetric distributions

Mean Absolute Deviation

Brownlees and Gallo (2006) propose the following method:

(|xi − x̄i(k)| < 3si(k)+γ), (13)

true observation i is kept, false observation i is removed, where x̄i(k) and si(k) denote re-

spectively the δ -trimmed sample mean and sample standard deviation of a neighborhood of k

observations around i and γ is a granularity parameter. The neighborhood of observations is

always chosen so that a given observation is compared with observations belonging to the same

trading day. That is, the neighborhood of the first observation of day are the first k ticks of the

day, that of the last observation of the day are the last k ticks of the day, the neighborhood of
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a generic transaction in the middle of the day is made by approximately the first preceding k/2

ticks and the following k/2 ones, and so on. The neighbourhood function is linearly logical.

A percentage of trimming δ, directly proportional to the frequency of outliers is chosen.

The parameter k should be chosen on the basis of the level of trading intensity. If the trading

is not very active k should be “reasonably small”, so that the window of observations does not

contain extreme prices (the contrary is true if the trading is very active). The role of the γ

parameter is to avoid zero variances produced by sequences of k equal prices. The choice of

γ should be a multiple of the minimum price variation allowed for the specific stock. We note

that this method is high on subjective implementation.

BNHLS

The BNHLS method combines Mean Absolute Deviation and Median Absolute Deviation as

a secondary method of cleaning. The cleaning band they employ is 10 times of the deviation

local mean of 50 observations (not including the observation under study) from the median

absolute deviation of the dataset. This step however is preceeded by their primary method that

is based on the spread represented by the quote. A datapoint is considered an outlier if its

spread is 50 times the median spread of the day. These two steps when combined one after the

other, represent an effective data handling technique.

Median Absolute Deviation (Hampel (1974)

This estimator is the median absolute deviation about the median. It is given by:

M ADmedian = b∗medi |xi −med j x j | (14)

The MAD has the best possible breakdown point at 50 percent. Its influence function is

bounded.The constant b is needed to make the estimator consistent for the parameter of interest.

For Gaussian distributions we need to set b = 1.4826. For each xiwe declare it as an outlier if

its distance from the MADMedian is over 3. i.e if,

|xi −med j x j | > 3∗M ADmedian. (15)
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While the MADMedian is an extremely useful estimator, it has some drawbacks. Its efficiency

at Gaussian distributions is low and since it gives equal importance to positive and negative

deviations from the median, it takes a symmetric view on the dispersion. This makes it less

useful for highly skewed distributions, a situation where the following three options are better.

2.3.2 Methods for Asymmetric Distributions

Sn (Rousseeuw and Croux (1993))

The estimator Snis given as :

Sn = c ∗medi(med j |xi − x j |) (16)

In (13) above for each i we compute the median of (xi − x j(; j = 1, ...,n) . The median of the

n numbers we obtain gives our final estimate S. The factor c has a default value of 1.1926 and

is used for consistency. We consider any xi as outlier if its distance from the median is greater

than 3 times Sn.

|xi −med j x j | > 3∗ Sn. (17)

The outer median in (14) is a low median, which is the order statistic of rank (n+1)/2 , and the

inner median is a high median, which is the order statistic of rank (n/2)+1 .

Qn (Rousseeuw and Croux (1993))

The estimator Qn is given as :

Qn = d ∗ (|xi − x j |; i < j)(k) (18)

where d is a constant factor, 2.21914 and k =
(h
2
)
≈

(n
2
)
/4, h = (n/2)+1, here k refers to the pairs

to compute the pair-wise distances.

Qn has a 50 percent breakdown point and is suitable for asymmetric distributions. Both,

Sn and Qn are robust but computationally intensive. However, Croux and Rousseeuw have

constructed fast algorithms for them. These have also been implemented in the R package
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"robustbase", making computation easier.

ScaleTau2 (Maronna and Zamar (2002))

The robust τ (tau)-estimate is :

s(X)2 := s2
0*(1/n)

∑
i

ρc2((x(i)−µ(X))/s0), (19)

where ρc(u) = min(c2,u2).

In the event that research study requires it, the bid and ask price series can be recombined

at this stage using the timestamp available with the tick data. This is presented in the empirical

illustration in the next section.

3 Empirical Illustration: Realised Kernels in the absence of

NMN

We empirically illustrate our proposed paradigm by estimating volatility using Realised Kernels

following Barndorff-Nielsen et al. (2009). Our proposed paradigm to handle NMN is expected

to improve the estimation of realised kernels. The choice of volatility estimation using re-

alised kernels to illustrate our paradigm is deliberate. Firstly, the realised kernel of BNHLS

is sensitive to data handling. Secondly, BNHLS have given us a benchmark and sophisticated

technique for data handling. We use results obtained using this technique as a benchmark to

compare any improvements obtained by using our proposed methods. Elements of data han-

dling are also adopted from BNHLS.

The dataset comprises of a sample of 10 stocks, one from each decile of NASDAQ 100

ranked on the basis of business time. Business time is defined as the number of messages in the

data sample of NASDAQ Itch for the trading day 30-October-2017. These messages includes

the quotes, quote modifications, trades and quote deletions. We first rank the NASDAQ 100

stocks on the basis of business time. We select the first stock from each decile. 3

3MSFT is the second stock in the first decile has been selected over APPL due to dataset issues. We do not
expect this to influence results in anyway.

15



3.1 Design

The research design comprises estimating realised variance at tick level and realised kernel at

tick level for trade data and midquote data. The realised kernel is estimated as per the technique

in Barndorff-Nielsen et al. (2009). There is no difference in the data handling for trade data

between our method and BNHLS. The important step is to parse out multiple trades with the

same timestamp and replace them with their median value. Since trades act as signals, the

estimate of realised values for the trade acts as a benchmark. In their work BNHLS have shown

that the estimate for realised kernel for trades and midquotes was close, demonstrating the

robustness of the realised kernel as an estimate of volatility. Given the difference in midquote

price series construction (as discussed later) this result is not expected in the present estimation.

As a first step, the realised kernel values are estimated using the original method from

BNHLS so as to compare with the estimates we obtain after removal of NMN. This estimation

is referred to as BNHLS.

Second, the original method from BNHLS is reinforced with LOBclean step given in sec-

tion 2. This involves identifying and cleaning data that never enter the top 10 price levels in

the limit order book. There is no ambiguity about this data being noise. In the process, we can

evaluate any improvement in the estimation of the realised values. This estimation is referred

to as BNHLS+LOBclean.

Third, the realised values are estimated using our paradigm. This involves the limit order

book reconstruction and cleaning, separating the bid and ask price series, cleaning data that are

beyond the band defined by the techniques in section 2, and finally, joining the two series to

get a single midquote price series. While we evaluate the distribution of the bid and ask price

series, we carry out the estimation using MADMed, Sn, Qn and ScaleTau2 to compare their

performance.

3.2 Data Handling

The data handling steps are summarised in Table II for all the estimating procedures. Data

handling for quote preparation involves 5 to 6 distinct stages. Correction for trading time and

multiple datapoints in the same timestamp are common steps. The BNHLS based steps have
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spread correction and later a data cleaning based on a combined Mean absolute deviation and

median absolute deviation. Methods in our paradigm involve, limit order book modelling for

noise removal and separation of bid and ask price series. The data cleaning procedures are

applied to the separated series. LOBclean is also included in the reinforced BNHLS method.

Table II: Morphology of Data Handling Steps.
Data Handling Step Trade BNHLS BNHLS +

LOB-
clean

MADMed Sn Qn ScaleTau2

1. Correction for
Market Timing Y Y Y Y Y Y Y

2. Removal of
Erroneous data Y Y Y Y Y Y

3. Correction for
Multiple datapoints
with same Time
Stamp

Y Y Y Y Y Y Y

4. Data Cleaning
using Spread as
Criterion

Y Y

5. Data Cleaning
using BNHLS Mean
Absolute Deviation
from MAD
(Median)

Y Y

6. Noise Removal in
the Limit Order
Book

Y Y Y Y Y

7. Separation of Bid
and Ask data series Y Y Y Y

8. Data Cleaning
using Median
Absolute Deviation
as Criterion

Y

9. Data Cleaning
using Sn as Criterion Y

10. Data Cleaning
using Qn as
Criterion

Y

11. Data Cleaning
using ScaleTau2 as
Criterion

Y
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3.3 Data Description

We are aware at the outset of the existence of serial correlation. However what is of interest

is not the existence of but the nature of the autocorrelation. The analysis of autocorrelation is

important to understand the stochastic processes of U and V . Market microstructure noise (U)

induces autocorrelation in the intraday returns and it can be observed in the price series as well.

This autocorrelation is the source of bias in realised variance estimation Hansen and Lunde

(2006). Hansen and Lunde also note that “prewhitening” of intraday returns and kernel based

estimators aid the estimation process. We would want to check if there is a difference in influ-

ence of V . Our assumption in section 1 was that U and V are independent or mixed stochastic

noise processes. The experimental design gives us several datapoints to investigate the role

of autocorrelation and the stochastic processes. The impact of LOB cleaning, time cleaning

step in trade prices, comparative impact of BNHLS and MADMed (or Sn, Qn, ScaleTau2) data

cleaning can throw insights into the stochastic processes.

Table III, summarises our findings with respect to autocorrelation in trade and midquote

price series for our sample of stocks. It also juxtaposes the observations against the distribu-

tions in the bid and ask price series we observed. Figures 3 to 12 (Refer Appendix) present

the autocorrelation function for our sample of stocks. The figures give the autocorrelation in

raw trade price series, time cleaned trade price series, raw midquotes, LOBclean midquote

price series, price series after BNHLS data cleaning and price series of the MADMed method.

The latter serves as a representative method from our paradigm. Although, some consistent

observations can be made, these figures indicate the presence of diverse stochastic processes.

3.3.1 Trades

The time cleaning step in Trade price series has a mixed impact. It may induce an increase,

decrease or no change in autocorrelation. This step in trade price series handling merits a

deeper discussion. The possible reasons for such timestamp clustering is not known to us. As

Table IV shows, the loss in datapoints from transaction price signal ranges from 26% in MAR

to 44% in HOLX and MSFT. We could not find any way to prevent such a high loss in signal.

The need to have a single price value at a given timestamp is important to further generate the
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Table III : Autocorrelation in the trade and midquote return series of the sample stocks.
Stock
(per-

centile)

Autocorrelation function
(Trades) Autocorrelation function (Midquotes)

MSFT
(99)

First order negative. Time
clean induces higher order

autocorrelation

First order negative. LOBclean takes out
autocorrelation from 2nd to 10th lag. BNHLS

and MADMed clean up higher order
autocorrelation. Higher order auto correlation is

from V .

AMAT
(90)

First order negative

First order negative and Third order positive.
LOBclean takes out the third order serial

dependence (we infer this to be V). BNHLS and
MADMed remove higher order autocorrelation.

ATVI (80)

First order negative. Timeclean
removes some higher order

autocorrelation.

First order negative autocorrelation and weak
lower order. LOB cleaning removes lower order
except first order. In BNHLS and MADMed it

is completely removed except 1first order.
Wavelets seem to be V .

NFLX
(70)

First order negative
autocorrelation.

Autocorrelation present upto lag 20. Strong first
order negative autocorrelation. LOBclean

cleans up several lower order autocorrelation
but not first order. MADMed clean up all auto

correlation except lag 1. BNHLS misses out the
first 20 lags.

PCLN
(60)

First order negative
autocorrelation

Strong first and second order acf. LOBclean
impacts the second order autocorrelation.

MADMed and BNHLS clean up autocorrelation
other than first and second order.

MAR (50)

Strong first order
autocorrelation and other

weaker autocorrelations in raw
and time clean trades.

First order negative autocorrelation and higher
orders also present. However LOBclean

increases autocorrelation of higher orders.
BNHLS and MADMed cleans up higher order

autocorrelation.

TTWO
(40)

First order negative and weak
second order positive

autocorrelation. Higher orders
autocorrelation also present.

First order negative autocorrelation. BNHLS
and MADMed remove all higher order

autocorrelation.
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Figure 1 (Contd...): Plots of trade and quotes from NASDAQ, 30-Oct-2017. Price in USD and
Time in hours.

Table III (...contd): Autocorrelation in the trade and midquote return series of the sample stocks.
Stock
(per-

centile)

Autocorrelation function
(Trades) Autocorrelation function (Midquotes)

HOLX
(30)

First order negative
autocorrelation. No impact of

time cleaning.

First order negative autocorrelation. other
orders present but not significant. LOBclean
has a mixed impact. BNHLS and MADMed
have usual impact cleaning up higher order

autocorrelation.

JBHT
(20)

First order negative
autocorrelation but not very
strong. higher orders present
and LOBclean increases it.

First order negative autocorrelation. BNHLS
and MADMed increase the second order. wipe

out others.

MELI
(10)

Autocorrelation of lower orders
and middle orders. Timeclean

has mixed impact.

Strong first order negative autocorrelation. No
impact of LOBclean. BNHLS and MADMed

decrease the first order autocorrelation by 25%.
Wipe clean higher order autocorrelation.
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Figure 2: The top left panel plots trades and quotes of MSFT, NASDAQ, 30-Oct-2017 and the
top right, the data cleaned with BNHLS method. Trades are represented in blue in both plots.
Bids are green and asks in red. Midquotes in black. Green arrows point to quotes and red
arrows to trades. In right some stochastic processes still remain after data cleaning using the
method of BNHLS. Contrast this with the bottom left panel plot in which data is handled using
one of our proposed methods.
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return series. Where a return series is not used and in case of tick sampling, one may consider

not using this step. Some trade price execution (messages ’X’ and ’E’ in NASDAQ Itch) can be

linked to orders using the unique order reference number. Hence, these ticks although with the

same timestamp are distinguishable.

3.3.2 Midquotes

The original and earliest way of preparation of a midquote data series is to take the mid of the

best bid and best ask. This is adapted into limit order market to be the highest bid and lowest

ask at all ticks. The challenges with this manner of midquote series preparation are: First, while

the data series so prepared will be a pseudo-trade data series, it does not get influenced by the

incoming quotes, unless they are the best priced quotes. Second, the issue of stale quotes, that

is, the quote included in the series may be redundant by the time it is included in the series.

Third, the non-synchronous updation of bids and asks.

There are two other alternatives. One could use the midquote to represent the mid point

of the latest bid and latest ask. The problem here is that the midquote series loses sight of the

trade signal. Although the volatility profile is closer to the trade series.

The second alternative is to use the mid of the quote coming in the latest tick and the

opposing best bid / offer. We have chosen this as this solves the issue of the connect with the

trade series and also the issue of stale quotes. This series by its very construction is expected to

have a higher volatility profile than other series. If the objective is to demonstrate the proximity

of the estimation from trades and the midquotes this may not be suitable. However, with the

dataset having autocorrelation and heteroskedasticity, this technique of midquote data series

preparation seems promising.

3.3.3 Autocorrelation

We find first order negative autocorrelation in the midquote price series of all stocks. Some

variations such as third order positive autocorrelation in AMAT, autocorrelation upto 10 lags

in MSFT and upto 20 lags in NFLX and second order in PCLN. With the exception of HOLX,

data handling techniques have not had any impact on the negative first order autocorrelation.
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There is a 25% reduction in case of HOLX and some minor reduction in several other stocks.

We infer the first order negative autocorrelation to be the main source of autocorrelation and

resulting from microstructure noise U. Apart from the first order autocorrelation, all higher

order autocorrelation are the result of non microstructure noise (V) or a mix of U and V . Data

handling methods employed in BNHLS and our proposed methods (as illustrated in MADMed)

remove autocorrelation emanating from V . BNHLS and MADMed (and Sn, Qn and ScaleTau2)

clean up higher order autocorrelation. An exception exists in case of NFLX where BNHLS fails

to remove autocorrelation in first 20 lags.

3.3.4 LOBclean

The LOBclean step has mixed results with higher order autocorrelation. This method has no

impact on the first order autocorrelation, cleans up lower order autocorrelation from 2nd upto

20th in case of the first five deciles (MSFT, AMAT, ATVI, NFLX and PCLN), in MAR it in-

creases higher order autocorrelation and in others it has negligible impact. We see the operation

of mixed processes of U and V in the larger stocks and only V in the smaller stocks. This step

behaves like a control group in our design. Since, we are sure about characterising this step

as impacting V alone, we can infer the stochastic processes in action. When LOBclean has

no impact on autocorrelation, we infer an independent V . When it increases autocorrelation, it

indicates a mixed process, where clean up removes V and leaves U alone. When it decreases

autocorrelation, the autocorrelation originates from V alone or from a mixed U and V process

where both get removed.

3.3.5 McLeod-Li test for the ARCH effect

High frequency quote and trade data are known to display volatility clustering. McLeod and

Li (1983) proposed a formal test for ARCH effect based on the Ljung-Box test. It looks at the

autocorrelation function of the squares of the pre-whitened data, and tests whether the first L

autocorrelations for the squared residuals are collectively small in magnitude. Since we want to

test the data series directly, this suits our purpose. To illustrate, figure 13 (Appendix) shows the

results of the McLeod-Li test for MSFT and NFLX. The null hypotheses of no ARCH effects
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is rejected. The results for all the stocks in our sample are similar, that is, the null hypotheses

of no ARCH effects is rejected.

3.4 Results and Discussion

Table V summarises the results of the estimation of realised variance (RV) with tick level sam-

pling and the realised kernel (RK) estimation. The RK estimation is as per BNHLS (2009).

BNHLS serves as the benchmark for the performance of our data handling method. Move-

ment in the direction of the estimate from trades data would be construed as a performance or

efficiency improvement.

3.4.1 Trades

The volatility estimates (RV-tick and RK) from trade data for our sample stocks is low. There

could be a downward bias as a result of the presence of negative serial correlation of the first

order and second order and heteroskedasticity. This could also have resulted from the increase

in autocorrelation we had observed after the timestamp correction stage.

3.4.2 Midquotes

Table VI shows the improvement in estimation achieved by our proposed methods (identified

by the last step in the method MADMed, Sn, Qn, ScaleTau2) over the benchmark BNHLS.

Our focus is on the estimation of RK. BNHLS when reinforced by LOBclean step results

into an improvement in estimation efficiency ranging from 3.6% in JBHT to 17.66% in PCLN.

The average improvement is 8.96% with an average data loss of 0.6%. With additional loss of

data ranging from 2.54% to 3.23%, the methods MADMed, Sn, Qn and ScaleTau2 can on an

average improve efficiency over 25%. The efficiency improvement achieved by the 4 methods

range from 13.15% to 43.75%. As expected, given the nature of distributions, Qn performs

best in efficiency improvement, among the four methods, in 8 out of 10 stocks. MADMed

performs better in ATVI and NFLX. The best performing method successfully removes fat tails,

discontinuities and jumps. This is observed in all samples without exception. The improvement

in estimation efficiency, thus, has a statistical basis and is not incidental. The tails in the data
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is mostly V . BNHLS is not able to handle the tails as effectively. We had noticed this visually

in section 2 (figure 2). If the distribution is normal, BNHLS and MADMed can be effective

methods. Although, the four methods outperform the benchmark, the absolute distance between

the four methods themselves is not high. The improvement in estimation efficiency is high. But

it comes at a cost of data loss.

The data loss in the four methods ranges from a low of 0.88% to high of 10.56%. Given

the struggle for model fit and estimation efficiency in high frequency market microstructure

research, we believe it is a favourable trade off. Let us now evaluate what happens if we reward

less loss of data in calculating efficiency. This is a theoretical exercise as by design the lost data

is mostly non-microstructure noise and the above trade off is a huge gain.

Table VII gives the efficiency addition in RK for every 1 % loss of data over benchmark

(BNHLS). This measure is obtained by simply normalising the improvement in efficiency of

estimation over benchmark with the loss in data over the benchmark. The average of each

of the 5 methods ranges between 16.03 (BNHLS+LOBclean) to 23.21 (Sn). The stock level

efficiency addition ranges from a low of 1.29 (AMAT, MADMed) to a high of 97.51 (MAR,

MADMed). Using this yardstick, BNHLS+LOBclean is a better method in 5 out of 10 stocks

in our sample and MADMed is better in 3 out of 10 stocks.

Table IV : Loss of data from Timecleaning step for trade price series
Stock (per-

centile)
Trades before

cleaning
Trades after
timestamp
cleaning

% loss of data

MSFT (99) 47892 26677 44%
AMAT (90) 12947 7926 39%
ATVI (80) 15499 8838 43%
NFLX (70) 19220 13282 31%
PCLN (60) 4111 2362 43%
MAR (50) 4524 3351 26%

TTWO (40) 5789 3351 42%
HOLX (30) 4259 2375 44%
JBHT (20) 5243 3498 33%
MELI (10) 4124 2927 29%
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Table V: Realised Variance and Realised kernel estimation results. The data handling methods
proposed in this paper produce improved estimation in each instance. The best performing
method (highlighted with a box) 20% of times comes from a method for symmetric distribu-
tions.

For symmetric distributions For asymmetric distributions
Stock

(percentile)
Estimation Trades BNHLS

BNHLS+
LOB-
clean

MADMed Sn Qn
ScaleTau2

MSFT (99)
RV-tick 0.0395 6.1922 5.6472 4.8897 4.8906 4.8862 4.8886

RK 0.0198 3.0980 2.8238 2.4451 2.4456 2.4434 2.4445
Datapoints 26677 451242 448857 447236 447261 447198 447233

AMAT (90)
RV-tick 0.0163 3.5872 3.2978 3.0982 3.1153 3.1109 3.1121

RK 0.0082 1.7937 1.6490 1.5493 1.5578 1.5556 1.5562
Datapoints 7926 203114 202152 181674 188101 186740 186840

ATVI (80)
RV-tick 0.0041 5.5817 5.2507 4.7080 4.7129 4.6964 4.7050

RK 0.0021 2.7912 2.6255 2.3541 2.3566 2.3484 2.3526
Datapoints 8838 145754 145045 142073 142683 141657 142042

NFLX (70)
RV-tick 0.0431 3.9910 3.3262 2.4350 2.5193 2.5347 2.5428

RK 0.0217 1.9963 1.6631 1.2176 1.2598 1.2674 1.2715
Datapoints 13282 106413 104747 100873 102769 103102 103235

PCLN (60)
RV-tick 0.0001 0.5005 0.4127 0.3069 0.3063 0.3038 0.3042

RK 0.0001 0.2506 1.6631 0.1535 0.1532 0.1519 0.1521
Datapoints 2362 56258 55818 55654 55650 55631 55634

MAR (50)
RV-tick 0.0011 0.0512 0.0488 0.0299 0.0298 0.0288 0.0290

RK 0.0006 0.0256 0.0245 0.0150 0.0149 0.0144 0.0145
Datapoints 3351 73472 73338 73160 73149 73081 73096

TTWO (40)
RV-tick 0.0002 1.7142 1.6107 1.4734 1.4723 1.4684 1.4701

RK 0.0002 0.8572 0.8055 0.7367 0.7362 0.7343 0.7351
Datapoints 3949 65393 65124 64720 64699 64625 64660

HOLX (30)
RV-tick 0.0156 0.3666 0.3338 0.3063 0.3047 0.3030 0.3041

RK 0.0079 0.1832 0.1668 0.1533 0.1525 0.1516 0.1521
Datapoints 2375 52497 52289 52240 52228 52185 52215

JBHT (20)
RV-tick 0.0002 1.8028 1.7376 1.5041 1.4984 1.4896 1.5392

RK 0.0003 0.9016 0.8691 0.7522 0.7493 0.7449 0.7697
Datapoints 3498 43896 43691 41362 41252 40896 42097

MELI (10)
RV-tick 0.0008 3.6151 3.2718 2.3168 2.3008 2.2946 2.3555

RK 0.0008 1.8183 1.6451 1.1590 1.1510 1.1480 1.1784
Datapoints 2927 31627 31386 30262 30247 30217 30483
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Table VI: Efficiency addition in RK for unit loss of data over benchmark (BNHLS) (Efficiency
change with 1% loss of data)

Technique BNHLS+LOBclean MADMed
Sample

Stock (Per-
centiles)

Absolute
Efficiency
improve-

ment
(A)

Data
Removal

(B)

Normalised
Efficiency
improve-

ment
(C=A/B)

Absolute
Efficiency
improve-

ment
(A)

Data
Removal

(B)

Normalised
Effi-

ciency
improve-

ment
(C=A/B)

MSFT (99) -8.85% -0.53% 16.75 -21.07% -0.89% 23.74
AMAT (90) -8.07% -0.47% 17.03 -13.63% -10.56% 1.29
ATVI (80) -5.94% -0.49% 12.20 -15.66% -2.53% 6.20
NFLX (70) -16.69% -1.57% 10.66 -39.01% -5.21% 7.49
PCLN (60) -17.66% -0.78% 22.58 -38.75% -1.07% 36.09
MAR (50) -4.30% -0.18% 23.56 -41.41% -0.42% 97.51

TTWO (40) -6.03% -0.41% 14.66 -14.06% -1.03% 13.66
HOLX (30) -8.95% -0.40% 22.59 -16.32% -0.49% 33.34
JBHT (20) -3.60% -0.47% 7.72 -16.57% -5.77% 2.87
MELI (10) -9.53% -0.76% 12.50 -36.26% -4.32% 8.40

Average -8.96% -0.61% 16.03 -25.27% -3.23% 23.06

Technique Sn Qn
Sample

Stock (Per-
centiles)

Absolute
Efficiency
improve-

ment
(A)

Data
Removal

(B)

Normalised
Efficiency
improve-

ment
(C=A/B)

Absolute
Efficiency
improve-

ment
(A)

Data
Removal

(B)

Normalised
Effi-

ciency
improve-

ment
(C=A/B)

MSFT (99) -21.06% -0.88% 23.87 -21.13% -0.90% 23.58
AMAT (90) -13.15% -7.39% 1.78 -13.27% -8.06% 1.65
ATVI (80) -15.57% -2.11% 7.39 -15.86% -2.81% 5.64
NFLX (70) -36.89% -3.42% 10.77 -36.51% -3.11% 11.73
PCLN (60) -38.87% -1.08% 35.96 -39.39% -1.11% 35.34
MAR (50) -41.80% -0.44% 95.07 -43.75% -0.53% 82.21

TTWO (40) -14.12% -1.06% 13.30 -14.34% -1.17% 12.21
HOLX (30) -16.76% -0.51% 32.70 -17.25% -0.59% 29.02
JBHT (20) -16.89% -6.02% 2.80 -17.38% -6.83% 2.54
MELI (10) -36.70% -4.36% 8.41 -36.86% -4.46% 8.27

Average -25.18% -2.73% 23.21 -25.57% -2.96% 21.22
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Table VI (...contd): Efficiency addition in RK for unit loss of data over benchmark (BNHLS)
(Efficiency change with 1% loss of data)

Technique ScaleTau2
Sample

Stock (Per-
centiles)

Absolute
Efficiency
improve-

ment
(A)

Data
Removal

(B)

Normalised
Effi-

ciency
improve-

ment
(C=A/B)

MSFT (99) -21.09% -0.89% 23.74
AMAT (90) -13.24% -8.01% 1.65
ATVI (80) -15.71% -2.55% 6.17
NFLX (70) -36.31% -2.99% 12.16
PCLN (60) -39.31% -1.11% 35.44
MAR (50) -43.36% -0.51% 84.73

TTWO (40) -14.24% -1.12% 12.71
HOLX (30) -16.98% -0.54% 31.60
JBHT (20) -14.63% -4.10% 3.57
MELI (10) -35.19% -3.62% 9.73

Average -25.01% -2.54% 22.15

Table VII : Efficiency addition in RK for unit % loss of data over benchmark (BNHLS). To
calculate this measure, start with the outperformance over the benchmark and then normalise
with the additional loss of data.

Sample
Stock (Per-

centiles)
BNHLS +

LOB-
clean

MADMed Sn Qn ScaleTau2

MSFT (99) 16.75 23.74 23.87 23.58 23.74
AMAT (90) 17.03 1.29 1.78 1.65 1.65
ATVI (80) 12.20 6.20 7.39 5.64 6.17
NFLX (70) 10.66 7.49 10.77 11.73 12.16
PCLN (60) 22.58 36.09 35.96 35.34 35.44
MAR (50) 23.56 97.51 95.07 82.21 84.73

TTWO (40) 14.66 13.66 13.30 12.21 12.71
HOLX (30) 22.59 33.34 32.70 29.02 31.60
JBHT (20) 7.72 2.87 2.80 2.54 3.57
MELI (10) 12.50 8.40 8.41 8.27 9.73
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4 Summary and Conclusion

This study brings forth a unifying empirical paradigm via the identification and treatment of

non-microstructure noise (NMN) in order to induce robustification in empirical microstructure

research with UHF data. It identifies the different stochastic processes at play in UHF data

and presents methodologies to address the impacts thereof. It synthesizes dominant paradigms

in microstructure theory and associated statistical techniques, and offers a robust and universal

diagnostic framework for the empirical researcher to apply to the data elements commonly used

in such research. Each step is detailed for application by the empirical researcher. The unifying

paradigm’s effectiveness is demonstrated through dramatic improvements in Realized Kernel

(RK) and Realized Variance (RV) estimation efficiencies.
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Appendix

Figure 3: Autocorrelation in MSFT (NASDAQ, 30-October-2017). First order negative serial
correlation present in trade price series. Time correction induces autocorrelation of higher
order. In the midquote price series we find first order negative autocorrelation. Also seen
at lower orders. LOBclean takes out some autocorrelation between 2nd to 10th lag. Both
BNHLS and MADMed remove autocorrelation except the first and second order. Higher order
autocorrelation thus seems to be coming from V .
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Figure 4: Autocorrelation in AMAT (NASDAQ, 30-October-2017). Both the raw trade and
clean trade are first order negative serial dependence processes. Cleaning increases short or-
der autocorrelation and removes long order autocorrelation. In midquotes we find first order
negative and third order positive autocorrelation. No impact of LOB cleaning on first order
acf but has impact on 3rd order positive autocorrelation. No difference between BNHLS and
MADMed.
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Figure 5: Autocorrelation in ATVI (NASDAQ, 30-October-2017). First order negative autocor-
relation in trades. Time clean step reduces autocorrelation except first order dependence. First
order negative autocorrelation and weak lower order autocorrelation in midquotes. LOB clean-
ing takes care of autocorrelation except first order. In BNHLS and MADMed it is completely
removed except first order.
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Figure 6: Autocorrelation in NFLX (NASDAQ, 30-October-2017). Trades are first order auto-
correlation processes. Time cleaning step increases the autocorrelation but not significantly. In
midquote series autocorrelation present upto lag 20. Strong first order negative autocorrelation.
LOBclean cleans up several lower order autocorrelation but not first order. MADMed clean up
all auto correlation except lag 1. BNHLS misses out the first 20 lags.
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Figure 7: Autocorrelation in PCLN (NASDAQ, 30-October-2017). Strong first order autocor-
relation in trades. Timeclean step reduces autocorrelation in trades. In the midquote series,
strong first and second order autocorrelation is seen. LOBclean impacts the second order au-
tocorrelation. Not others. MADMed and BNHLS clean up autocorrelation other than first and
second order.
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Figure 8: Autocorrelation in MAR (NASDAQ, 30-October-2017). Strong first order autocorre-
lation and other weaker autocorrelations in raw and time clean trades. In midquote series, first
order negative autocorrelation. However LOBclean increases autocorrelation of higher orders.
BNHLS and MADMed cleans up higher order autocorrelation.
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Figure 9: Autocorrelation in TTWO (NASDAQ, 30-October-2017). Trades show first order
negative autocorrelation and weak second order positive autocorrelation. Higher orders auto-
correlation also present. In midquote series we find first order negative autocorrelation. BNHLS
and MADMed remove all higher order autocorrelation.
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Figure 10: Autocorrelation in HOLX (NASDAQ, 30-October-2017). The trades series displays
first order negative autocorrelation. No impact of time cleaning step. In the midquote series we
find first order negative autocorrelation. Autocorrelation is also present in other orders, but not
significant. LOBclean step has a mixed impact. BNHLS and MADMed remove higher order
autocorrelation.
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Figure 11: Autocorrelation in JBHT (NASDAQ, 30-October-2017). First order negative auto-
correlation is seen in trades series but is not very strong. Higher orders present and LOBclean
increases it. In midquote series first order negative serial correlation present. BNHLS and
MADMed increase the second order and wipe out others.
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Figure 12: Autocorrelation in MELI (NASDAQ, 30-October-2017). In trades, autocorrela-
tion of lower orders and middle orders is seen. The timeclean step has mixed impact on au-
tocorrelation of differing lags- increases some while it decreases others. In midquote series
there is strong first order negative autocorrelation. No impact of LOBclean step. BNHLS and
MADMed decrease the first order autocorrelation by 25% and wipe clean autocorrelation in
higher orders.
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Figure 13: The left panel shows the results of McLeod-Li test for MSFT and the right panel for
NFLX. At the top is the test for trades and bottom the test for midquotes. The null hypotheses,
of the presence of no ARCH effects is rejected as the p values are close to zero for all the four
cases..
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