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Abstract 

In developing and emerging economies, the accuracy of macroeconomic forecasts is often 

constrained by the limited availability of data both in time series and in cross-section. Given 

this constraint, this paper uses a suite of machine learning methods to explore if they can offer 

any improvements in forecast accuracy for headline CPI inflation (y-o-y) in 3 emerging market 

economies: India, China and South Africa. For each forecast horizon for each country, we use 

a host of machine learning models and compare the accuracy of each method to 2 benchmark 

models (namely, a moving average forecast and SARIMA). For India, we find that the deep 

neural networks out-perform the benchmark forecast for all horizons except the 1 month ahead 

forecast. The reduction in forecasting error ranges from 44% to 63%. For South Africa, the 

neural network model provides a reduction in forecasting error between 42% and 57% for the 

1 year forecast. For China, the reduction in forecasting error is much more modest ranging 

from 5% to 33%. An average forecast using different neural net methods performs much better 

than any individual forecast.  
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1. Introduction  

One of the most important goals of central banking is to maintain a stable inflation rate. 

In an analysis of central bank objectives for 47 developed and developing economies, BIS finds 

that price stability is the most important objective for every single one of these economies1. 

This suggests that developing a better inflation forecast is probably the most central issue in 

central banking research.  

Over the last few decades, most traditional inflation forecasting methods assume that 

there exists an underlying stochastic data generating process which can be determined by a pre-

specified model. However, such pre-specified models suffer from two key short comings. 

Firstly, a pre-specified model “can only be as good as its specification, regardless of what the 

data might suggest” (Jung, Patnam and Ter-Martirosyan, 2018). Secondly, if the underlying 

data generating process changes, the prevailing pre-specified model is invalidated. For 

instance, Stock and Watson (2007) estimate an integrated moving average (time varying trend 

cycle) model for inflation in the USA and find that the coefficients for this model changed in 

the beginning of the 1970s and then again in the mid-1980s, leading them to conclude that “…if 

the inflation process has changed in the past, it could change again”.   

Additionally, the extant forecasting approaches “bring a variety of undesirable 

properties, ranging from high sensitivity to model specification to high data requirements” 

(Smalter Hall and Cook, 2017). This is particularly relevant for forecasting inflation (and other 

macroeconomic variables) because it is not a high frequency variable, being available only at 

the monthly, quarterly or annual level. This problem is compounded for emerging and 

developing economies where “data availability is even poorer and sometimes close to not 

existent” (Jung, Patnam and Ter-Martirosyan, 2018).  

An alternative approach (Breiman, 2001) advocates for models which do not make any 

assumptions regarding a) the underlying data generating process and thus are invariant to 

changes in the same and b) do not make any assumptions regarding the underlying relationship 

between the independent variables and thus are not sensitive to model mis-specifications. 

Models belonging to the second school of thought focus on finding a function that best 

represents the relationship between the dependent and independent variables. Machine learning 

methods fall in this category of statistical modelling. Most machine learning models estimate 

non-linear relationships, which helps overcome a key disadvantage of linear models, primarily 

that linear models “fail to identify many macroeconomic phenomenon namely asymmetric 

business cycles, volatility of stock exchange, inherent regime switching and many others” 

(Tong, 1990).   

Thus, machine learning models provide an opportunity to improve accuracy in a limited 

data environment and as such are extremely relevant for developing and emerging markets. As 

a first step towards evaluating the usefulness of machine learning methods for developing 

markets, this paper forecasts the headline CPI inflation (y-o-y) for 3 emerging market 

economies: India, China and South Africa. For India, we forecast the 1 month ahead to 12 

month while for China and South Africa we forecast the 12 month ahead forecast. We use three 

                                                           
1 Issues in Central Banking, Chapter 2, BIS Publications 
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different classes of supervised machine learning methods, namely: penalized linear regression 

methods (Elastic Net regression), tree based methods (random forests and XG-Boost) and 

neural networks (CNN, CNN-LSTM and Encoder Decoder). 

  For each forecast horizon for each country, we use a host of machine learning models 

and compare the accuracy of each method to 2 benchmark models (namely, a moving average 

forecast and SARIMA). We find that the machine learning models – in particular the deep 

neural networks – out-perform the best benchmark forecast for all horizons except the 1 month 

ahead forecast. For the 3-month forecast of India’s inflation, neural network methods provide 

between 39% to 55% reduction in forecasting error when compared to the benchmark model, 

where forecast error is measured as the mean absolute deviation of the forecast from the 

realized inflation. For a 1 year forecast if Indian inflation, neural network models provide a 

27% to 44% reduction in forecast error.   

The superior performance of the most non-linear methods suggests that there exists a 

non-linear relationship between CPI (y-o-y) and its determinants in the three emerging market 

economies (baring the 1 month ahead forecast). Notably, deep neural networks are able to 

forecast both the peaks and troughs in CPI inflation despite having been trained on small 

samples. Thus, there are gains to be made from adopting machine learning methods to inform 

policy decisions in India specifically and all emerging market economies generally. 

We find that a combination of the three neural net methods provide an improvement of 

each method individually for all 3 countries. At the one year horizon, the average neural net 

forecast results in a reduction in forecasting error (measured by the Mean Absolute Deviation) 

of 51% for India, 30% for China and 67% for South Africa.  

While neural network methods provide limited scope for determining causal 

relationships, they do provide some avenues for determining which independent variables 

contribute most significantly to the forecast accuracy for each model. For each machine 

learning model, we determine which independent variables contribute most significantly to the 

accuracy of the forecast (variable importance). For CPI inflation in India, we find CPI and its 

sub-components, food, oil and bank related variables improve the forecast accuracy most 

significantly, which reinforces the findings of the literature examining the determinants of CPI 

inflation in India. 

The rest of the paper is organized as follows: Section 2 presents the literature review.  

Section 3 describes the benchmark models and the machine learning methods. Section 4 

explains the methods used for interpreting each machine learning method. Section 6 describes 

the sample and variable construction. Section 7 presents the results of the forecasting exercise 

while Section 8 presents the interpretation of the forecasts. Section 9 concludes. 

2.  Literature Review 

 

 The literature on the use of machine learning methods for the forecasting of 

macroeconomic variables is limited but is expanding rapidly. Jung, Patnam and Ter-

Martirosyan (2018) use elastic net, SuperLearner and Recurrent Neural Networks to forecast 
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the macroeconomic data of 7 advanced and emerging economies and find that the machine 

learning methods outperform the benchmark WEO forecasts. Smalter Hall and Cook (2017) 

forecast civilian unemployment in the US using 4 different deep neural networks, each of which 

outperforms the benchmark directed autoregressive model over short horizons. Biau and D’Elia 

(2010) find that Random Forests combined with a linear model out-performs an AR model for 

forecasting the GDP growth in the euro area. Tkacz and Hu (1999) forecast GDP growth using 

artificial Neural Networks (ANN) which are 15% to 19% accurate than the linear benchmark 

models considered.  

In contrast, Chuku, Oduor, and Simpasa (2017) use artificial neural networks to forecast 

macroeconomic variables in African countries and find that they only marginally outperform 

ARIMA and traditional structural econometric models. 

The literature on the use of machine learning methods for forecasting inflation is even 

sparser. Medeiros, Vasconcelos, Veiga, and Zilberman (2018) forecast in inflation over multiple 

horizons in the 1990s and 2000s for the US and find that machine learning models (random 

forests in particular) dominate the benchmark models. Chakraborty and Joseph (2017) present 

three case studies illustrating the potential utility of machine learning at central banks, of which 

one is forecasting CPI inflation (UK ) on a medium term horizon (two years). They find that 

the machine learning model beat the benchmark AR and VAR models by at least 29%. McNelis 

and McAdam (2005) estimate linear and neural network-based models “for forecasting 

inflation based on Phillips–curve formulations in the USA, Japan and the euro area”. They find 

that the neural network based models outperform the linear models for forecasting the euro 

area service price indices but have variable performance across consumer and producer indices. 

Nakarumra (2005) finds that on average neural networks dominate univariate AR models on 

for one and two quarter ahead inflation forecasts for the US. 

In India, the literature on the use of machine learning methods - in particular, for 

inflation forecasting using multivariate data - does not exist. A recent paper by Pratap and 

Sengupta (2019) estimate CPI inflation using a suit of machine learning models using 

univariate data but find that none of the models can out-perform an SARIMA model.  A paper 

by Sanyal and Roy (2014) compares linear, non-linear and consensus forecasting for IIP and 

GDP in India. Sanyal and Roy (2014) find that combination forecasts dominate linear and non-

linear methods for forecasting both IIP and GDP in the short horizon (1-6months). For long 

term forecasts (7-12months), non-linear methods are best for IIP while consensus forecasts are 

best for GDP.  However, the paper observed improvement in forecast accuracy by using 

“combination forecast for series with long memory property/ less volatile series.” 

 

Our paper is the very first to examine neural network prediction to examine inflation prediction 

in three of the BRICS countries – India, China and South Africa. Our use of multiple countries 

mitigates concerns that this method is not generalizable across several countries. 

 

3. Model Description   

 This section describes each machine learning method used CPI headline inflation for 

three emerging market economies: India, South Africa and China along with the benchmark 
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models (those that we compare the given machine learning method with in terms of prediction 

error).  We choose a multivariate approach for forecasting because we assume that “the 

inclusion of additional information as model inputs will improve model considerably” (Cook 

and Hall, 2017). In the remainder of the paper the notation we is throughout the paper is as 

follows: yi is ith observation of the dependent variable 𝑦 (for  𝑖 = 1 ,2, . . , 𝑁), ŷi,a is the predicted 

value of yi, Xi,p is the ith observation of independent variable 

3.1 Benchmark Models 

We consider two benchmark models: moving average and seasonal ARIMA. For each 

forecast horizon h, the moving average forecast (given my MA(h)) is computed as follows 

 �̂�𝑡+ℎ = 
1

𝐻
∑ �̂�𝑡−ℎ

𝐻
ℎ=1  (1) 

 

i.e. the predicted value of 𝑦𝑖 at time t+h is the average value 𝑦𝑖 over the preceding relevant 

forecast horizon. 

The seasonal ARIMA (SARIMA) is an extension of ARIMA that is capable of 

modelling the seasonal components in a univariate time series in addition to the autoregressive, 

moving average and trend components typically modelled by ARIMA. SARIMA is given by 

the following notation 

 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑚 (2) 

where (𝑝, 𝑑, 𝑞) are the traditional ARIMA parameters namely, p is the trend autoregressive 

order, d is the trend difference order and q is the trend moving average order. (𝑃, 𝐷, 𝑄) 𝑚 are 

the additional seasonal parameters : P is the number of seasonal autoregressive terms, D is the 

number of seasonal difference terms, Q is the number of seasonal moving average terms and 

m is the number of time steps for a seasonal period.  (p,d,q) are determined using  

Autocorrelation Function (ACF) , Partial Autocorrelation Functions (PACF) and tests for 

stationary. m is  traditionally set to 12 for monthly data and suggests a yearly seasonal cycle.  

The accuracy of each model is gauged using the Mean Squared Error (MSE). We 

choose the MSE as the metric to be minimized by each model because as compared to the mean 

absolute error (MAE), the MSE penalizes large deviations more. However, after having fit each 

model to achieve the lowest MSE possible using grid search to find the best hyper parameters, 

for ease in interpretation, to compare the forecasting accuracy across models in the testing 

sample, we report the Root Mean Squared Error (RMSE). We also report the mean absolute 

error (MAE) for each model. We report two accuracy improvement metrics – one for RMSE 

and one for MAE. The percentage accuracy increase is as compared to the best performing 

benchmark model i.e. for performance metric i , 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑖 = (
𝑏𝑒𝑠𝑡 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝑏𝑦 𝑚𝑒𝑡𝑟𝑖𝑐𝑖−𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑙 𝑚𝑒𝑡𝑟𝑖𝑐𝑖

𝑏𝑒𝑠𝑡 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝑏𝑦 𝑚𝑒𝑡𝑟𝑖𝑐𝑖
) . 100 

We also report the over-estimate percentage which is the number of times the forecast exceeds 

the actual as a proportion of the total testing observations. 
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3.2 A Brief Introduction to Machine Learning Methods 

Next, we describe the machine learning methods that we use, focusing on the tuning 

parameters used in our estimation. While in traditional econometric model, we choose the 

independent variables 𝑋𝑝 and the estimation strategy to obtain the parameter (�̂�) for a pre-

specified function, in machine learning models we find the optimal hyperparameters to arrive 

at the optimal parameters for a function forecasting �̂�𝑖,𝑎. We provide some level of details here 

drawn from Tibshirani and Friedman (2017), Hastie, James , Tibshirani and Witten (n.d.) and 

Goodfellow , Bengio and Courville (2016), as the typical readers in economics or finance may 

be less familiar with some of these methods.  

To understand the theoretical underpinnings of the machine learning methods used, we 

refer to Hastie, Tibshirani and Friedman (2017), Hastie, James , Tibshirani and Witten (n.d.), 

Varian (2012), Goodfellow , Bengio and Courville (2016) , Mullainathan and Spiess (2017) 

and Athey and Imbens (2019). In the machine learning literature, input arguments which define 

the structure (architecture) of the model are known as hyperparameters. The parameters learnt 

from a model so structured are known as model parameters. Model parameters define the 

function used for forecasting 𝑦𝑖. Illustratively, in traditional econometrics, we can think of the 

chosen independent variables as the hyperparameters and the �̂� as the parameter. For each class 

of machine learning models, there is a different set of hyper parameters. Different values of a 

hyperparameter result in different model architectures which ultimately results in different 

predictions of varying accuracy.  The process of searching for the hyperprameters that result in 

‘ideal’ model architecture i.e. the model architecture that results in the highest predictive 

accuracy is known as hyperparameter tuning. 

Hyperparameter tuning can be done a) based on previous literature i.e. hyperparameter 

values and/or rules of thumb discovered in past applications of the relevant machine learning 

model to the subject at hand ; b) manually : changing the hyperparameters until a satisfactorily 

high accuracy is reached; c) automatic search (Grid Search and Random Search): Grid Search 

is the process of specifing a set of values for each hyperparameter. The total number of model 

architectures is the Cartesian product of each set of each hyperparameter. Random Search is 

Grid Search combined with subsampling. In random search, instead of specifying a set of 

values, we specify a distribution for each hyper-parameter. The joint distribution of the 

hyperparameters gives all the possible model architectures under the given distributional 

assumptions. R random samples i.e model architectures are chosen from the joint distribution. 

For both Grid Search and Random Search, the ideal model architecture is the architecture 

resulting in the highest predictive accuracy. 

Thus, the objective is to find hyperparameters which work no matter what the 

underlying data. Finding such a generalizable set of hyper parameters requires careful 

specification of the training sample and out-of-sample testing period. To measure the predictive 

accuracy of a model, it is important that the forecast accuracy be measured out-of sample as 

the training accuracy can be made arbitrarily high through overfitting. However, if we use the 

entire out-of-sample data for testing, we may overfit to the out-of-sample data (a phenomenon 

known as ‘data leakage’), resulting poor true generalizability. To protect against ‘data leakage’, 

we split the out-of-sample data into two parts: validation data and testing data. The validation 
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set allows the evaluation of the model on unseen data to select the best model architecture, 

while still holding out a subset of data for final evaluation after finding the best model. 

The training, validation and testing data can be organized in many ways, namely, a) 

cross validation (bootstrap sampling for cross sectional methods), b) fixed window (training, 

validation and testing periods demarcated by dates), c) rolling window (shifting a window of 

fixed size ahead by one observation successively) and expanding window2 (increasing the 

window size by 1 successively).  

Each machine learning model needs a stopping/penalization/regularization criterion to 

reduce complexity and over fitting and they differ across machine learning classes. 

In the following sections, we move from simple linear models to increasingly complex 

models. We start with penalized linear regression methods (Elastic Net regression), tree based 

methods (random forests and XG-Boost) and deep neural networks (CNN, CNN-LSTM and 

Encoder Decoder).  

 

3.3  Penalized Regression/ Shrinkage Methods 

The 𝛽𝑜𝑙𝑠 estimates are BLUE (i.e. Best Linear Unbiased Estimates) i.e. they have zero 

bias but may have high variance. The variance of 𝛽𝑜𝑙𝑠 increases when a) P is almost as large 

as, equal to or greater than N and b) there is multicollinearity.  In fact, when N<P (also known 

as "fat data"), OLS estimates don’t have a unique solution. In the presence of high variance, 

𝛽𝑜𝑙𝑠 become unstable3 and have a tendency to over-fit on the training data resulting in poor out 

of sample predictions.  

To reduce the variance of 𝛽𝑜𝑙𝑠 estimates –albeit at the cost of having a positive bias - 

and thereby improve the accuracy of the out of sample predictions, the machine learning 

literature proposes many penalized regression/shrinkage methods. Each shrinkage method is a 

linear function which aims to reduce the variance of the 𝛽 estimates.  Penalized Linear 

Regression Methods/ Shrinkage Methods are named so because they shrink the 𝛽 estimates 

towards 0 by adding a penalty - known as the regularization term - to the regression sum of 

squares (RSSols) equation. The regularization term penalizes model complexity to avoid over 

fitting on the training data.  

Depending on the type of type of penalty used, there are different kinds of shrinkage 

methods. Here we consider one shrinkage method, Elastic Net regression, which with suitable 

hyper parameters, encompasses a broader class of shrinkage models. We use this method 

because the regularization term for Elastic Net (originally proposed by Zou and Hastie (2005)) 

is a weighted , convex combination of two different types of penalties– the ridge penalty and 

least absolute shrinkage selector operator (LASSO) penalty - as follows: 

 

                                                           
2 Popularly known as ‘online learning’ in machine learning literature 
3 ‘A small change in the training data can cause a large change in the least squares coefficient estimates.’(Hastie, Friedman, 

and Tibshirani, 2017). 
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𝛽𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡
̂ =  argmin

𝛽
{ ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑝𝑋𝑝,𝑖

𝑝

𝑝=1

)

𝑁

𝑖=1

2

+  𝜆 ∑(𝛼|𝛽𝑝| + (1 − 𝛼)𝛽𝑝
2)

𝑃

𝑝=1

} 

(3) 

 

 

Minimization of the above objective function implies minimizing: a) the RSSols (which 

results in coefficients which fit the data well) and b) the shrinkage penalty (which amounts to 

shrinking 𝛽𝑝 towards 0). Within the shrinkage penalty, the use of the LASSO penalty allows 

elastic net to perform variable selection by setting irrelevant 𝛽𝑝 to 0 and while the ridge penalty 

shrinks the coefficients of (highly) correlated independent variables in a similar fashion, 

resulting in stable coefficients . Thus, by combining the LASSO and ridge regression penalty 

terms, elastic net gives stable coefficients even in the presence of ‘fat data’ and high 

multicolinearity while also performing variable selection. Furthermore, Smeekes and Wijler 

(2018) also find that “penalized regression methods are more robust to misspecification than” 

a “ dynamic factor approach”. 

There are two hyperparamters in the elastic net method as in equation (3) above. The 

parameter 𝜆  is the shrinkage penalty: the smaller the value of 𝜆 (i.e. the closer 𝜆 is to 0) the 

closer 𝛽𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡
̂  is to 𝛽𝑜𝑙�̂�, while the greater the value of 𝜆, the more 𝛽𝑝 is shrunk towards 0 

reducing their variance. The domain of 𝜆 ranges from 0 to ∞.  

The parameter 𝛼 controls which penalty has more weight, whose domain ranges from 

0 to 1. When 𝛼 = 1, (3) reduces to LASSO regression while 𝛼 = 0 reduces (3) to ridge 

regression. If grid search finds 1 to be the optimal value of  𝛼, it suggests that the dependent 

variable is given by a sparse function (and vise versa for 𝛼 = 0).  

 

3.4  Tree based Models 

While penalized regression methods are capable of discerning linear relationships in 

the data, they cannot find a) interactions among the independent variables and b) non-linear 

relationships, unless the same are explicitly modelled. Modelling all pairwise interactions 

and/or non-linearites explicitly to solve this issue is “infeasible as it produces more regressors 

than data points” (Mullainathan and Spiess, 2017). Non-linear methods in machine learning 

remedy this short coming of linear methods. First, we consider tree based methods (random 

forests and XG-Boosted trees) followed by deep neural networks (Convolutional Neural 

Networks (CNNs), Long Short Term Memory (LSTM) networks and a combination of CNN 

and LSTM neural networks (CNN-LSTM)).  

Elastic net penalty 

LASSO 

penalty 

Ridge 

penalty 

𝑅𝑆𝑆𝑜𝑙𝑠 
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The building block of all tree based machine learning methods is a decision tree. 

Decision trees can be of two types: classification trees and regression trees. Given that we want 

to forecast a continuous variable, we focus on regression decision trees. A regression tree is a 

non-parametric method which splits the entire 𝑋𝑝,𝑖 space into R rectangular and non-

overlapping sub-samples called leafs (given by 𝐿1, 𝐿2 , …, 𝐿𝑅) such the RSS is minimized 

across all R leaves as follows  

𝑅𝑆𝑆𝑡𝑟𝑒𝑒 =  ∑ ∑(𝑦𝑖 −  𝑦𝐿�̂�
)2

𝑖∈𝐿𝑟

𝑅

𝑟=1

 

(4) 

 

𝑦𝐿�̂�
 equals �̅�𝐿𝑟

 i.e. the predicted value for 𝑦𝑖 in each leaf is the average value of  𝑦𝑖 in leaf 𝐿𝑅. 

Thus, the relationship between 𝑋𝑝,𝑖 and 𝑦𝑖 is “approximated by a piecewise constant model 

where each leaf (terminal node) represents a distinct regime” (Medeiros, Vasconcelos, Veiga, 

and Zilberman, 2018). Note that much like penalized regression methods a regression decision 

tree also aims at reducing variance.4 

How does a regression tree find the leaves which minimize (4)? It sequentially divides 

𝑋𝑝,𝑖 into two successively smaller sub-regions based on threshold values for each split. A 

threshold value is the observation i of independent variable 𝑋𝑝 that splits entire region into two 

regions such that the MSE is minimized across sub-regions. To find the threshold value t, the 

regression tree splits the region under consideration into two regions based on each observation 

i for each independent variable  𝑋𝑝 and chooses the (i, 𝑋𝑝) pair which gives the lowest MSE. 

This process of sequential, binary splitting continues till a stopping criterion is reached to 

prevent over fitting. The last layer of sub-samples form the leaves 𝐿𝑅 where 𝑦𝐿�̂�
 equals �̅�𝐿𝑟

.  

Among non-linear methods, the primary appeal of regression trees is that they are 

highly interpretable but may suffer from omitted variable bias in the presence of 

multicolinearity5. Furthermore, standalone decision trees are associated with high variance and 

the estimated regression tree is often “discontinuous with substantial jumps” (Athey and 

Imbens, 2019) which reduces the accuracy of the predictions made by a single decision tree 

substantially and making them uncompetitive. However, when regression trees are used in 

ensemble methods (like random forests and boosting), the accuracy of the predictions improves 

drastically. 

Ensemble learning methods forecast 𝑦𝑖 by aggregating the predictions of many weaker 

models (called base learners) into a single prediction.6 Two popular ensemble learners are 

bagging and boosting which when used in conjunction with decision trees result in random 

                                                           
4 However, Athey and Imbens (2019) caution against interpreting trees on the grounds of omitted variable bias, especially in 

the presence of correlated variables as “covariates that have strong associations with the outcome may not show up in splits 

because the tree splits on covariates highly correlated with those covariates.” 
 
6 Base learners can be from the same learning algorithm (as in the case with Random Forests) or different learning 

algorithms (eg: SuperNets). 
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forests and XG-Boost respectively. Each of the two has a different objective: while random 

forests aim at reducing variance XG-Boost reduces bias.  

Random Forests average over a large number of de-correlated trees to improve the 

accuracy of its predictions vis-à-vis a single regression tree. A random forest generates multiple 

decision trees simultaneously. The predictions of each tree are uncorrelated from those of the 

other because: a) each tree is built on a boot-strapped sample and b) at each new split in each 

tree, a new random subset of the independent variables of m predictors is chosen for 

determining the threshold value. After all the trees have been built, �̂�𝑟𝑓 is obtained by averaging 

the predictions of each tree. 7  

Athey and Imbens (2019) state that random forests are very effective when a relatively 

small number of the independent variables are related to the dependent variable. However, they 

also state that random forests a) “are not efficient at capturing linear or quadratic effects”, b) 

are not efficient at  “exploiting smoothness of the underlying data generating process” , c) tend 

to “have bias, particularly near boundaries” and d) “in small data sets will have more of a step 

function shape.” 

In a random forest, each tree is independent of the other because all the trees are built 

simultaneously. Boosting grows the trees sequentially rather than simultaneously to allow each 

subsequent tree to achieve a smaller forecast error than the preceding tree by learning from the 

residuals of the preceding tree. This is achieved by fitting each subsequent tree on the residuals 

of the preceding tree. Boosting updates each tree in a sequentially additive manner: The 

weighted output of the current tree is added to the preceding tree to update the boosted tree. 

�̂�𝑏𝑜𝑜𝑠𝑡 is the weighted average of these additive models. 

Currently, the most popular boosting algorithm is Extreme Gradient Boosting (XG-

Boost). XG-Boost uses boosting in conjunction with a gradient descent algorithm to minimize 

the loss function when adding a new model. This means that instead of fitting the each 

subsequent tree on the residuals of the previous tree, XG-Boost fits each subsequent tree on the 

gradient of the loss function of the previous tree. This to makes the boosting algorithm more 

generalizable to any differentiable loss function.  

3.4.1 Hyper-parameters for Tree Based Methods 

Using grid search, we determine the optimal hyperparameters listed in Table 1, which 

are used to determine the best parameters for building trees i.e. the best splitting variable and 

its associated threshold value for each node of each tree. 

Each tree based method requires a regularization criterion because a tree can over fit on 

the training data by growing till each node is a 100% pure node (i.e. a node where all the 

observation in the training data belongs to one regime). However, such a tree gives poor out of 

sample predictions. One popular regularization criterion is tree pruning once the whole tree is 

                                                           
7 m<p. Usually, m = √𝑃 i.e. the number of independent variables considered at each split (m) approximately equals the 

square root of the total number of independent variables. 
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built. Alternatively, determining the optimal hyper parameters in listed Table 1 also helps avoid 

over fitting.  

Maximum tree depth is the maximum possible number of levels a tree can have. If the 

tree is too short, it will be unable to find the relevant patterns in the data. However, if it is too 

deep, it will overfit. The minimum observations for node splitting, minimum observations for 

leaf formation and maximum number of leaf nodes help prevent the tree from overfitting by 

preventing the formation of regions that are too niche. Total number of trees defines the number 

of de-correlated trees grown.  In general, deeper trees reduce bias while a larger number of 

trees reduces variance. The number of independent variables to consider in each node while 

determining the best splitting variable also reduces variance. 

XG-Boost has additional parameters to reduce the variance of the trees: Columns 

Sample by Tree, Columns Sample by Level and Columns Sample by Nodes. ‘Columns Sample 

by Tree’ is the percentage of independent variables to consider while building each tree, level 

and node respectively in XG-Boost. Additionally, much like elastic net, XG-Boost regularizes 

the leaf weights using L1 and L2 penalty to encourage scarcity and reduce complexity. The 

learning rate slows down the weight updating process thereby reducing the possibility of 

overfitting. 

3.5  Deep Neural Network 

The machine learning methods considered till now are not capable of discerning any 

information from the sequential and temporal structure of time series data. If fact, tree based 

methods treat data as cross sectional. This is especially an issue if the data is not stationary. The 

deep neural networks considered by us - Convolutional Neural Networks (CNNs), a 

combination of CNN and LSTM neural networks (CNN-LSTM) and an Encoder Decoder 

network - remedy this short coming as they can discern information from the temporal and 

spatial structure of time series data.  

In general, neural networks are composite functions which are universal function 

approximators, i.e., they can approximate any arbitrarily complex function after being specified 

in the appropriate manner. A neural network is a linear/non-linear transformation of the 

weighted linear combinations of the data 𝑋𝑖,𝑝. Every neural network is broadly composed of 

three types of layers: the input layer, the hidden layer/s and an output layer. A neural network 

with only 1 hidden layer is known as a single-layer neural network.8 A neural network with 

more than 1 hidden layer is known as a deep neural network.  Goodfellow, Bengio, and Courville 

(2016) state that in out-of-sample testing, on average, deep neural networks generalize better 

than single-layer neural networks and thus we use the former for forecasting inflation. 

Each of the 3 layers is comprised of multiple nodes and is connected to the subsequent 

layer through weights. The structure of a neural network “follows the structure of a GLM 

model” but instead of using maximum likelihood estimation), it uses the feed forward 

mechanism and back propagation (a non-parametric algorithm) to determine the weights that 

                                                           
8 Lippmann (1987) finds that a multi-layer perceptron (MLP) with the appropriate number of hidden nodes is sufficient for 

estimating convex regions/regions of any shape thus over-coming the limitation of linearly separable regions.    
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result in the function for forecasting 𝑦𝑖 (Smalter Hall and Cook, 2017).The weights so determined, 

“identify which features and parameters (i.e. computational nodes) are relevant for prediction” 

(Smalter Hall and Cook, 2017). These processes are best illustrated by considering a fully 

connected feed forward neural network.  

A fully connected feed forward neural network is called fully connected because each 

node is globally connected i.e. each node in each layer is connected to each node in each 

subsequent layer. As a consequence, all the data is fed simultaneously to the hidden layers from 

the preceding layer. 

Fully connected neural networks rely on two processes for training: the feed forward 

mechanism, followed by back propagation. The feed forward mechanism is the process through 

which data goes from the input layer to the hidden layers and then to the output layer to produce 

the predicted value �̂�𝑛𝑛. The input layer is connected to computational nodes in the subsequent 

hidden layer where the weighted linear transformation of the data is computed. The 

computational node is connected to further computational nodes where the same operations 

take place. This continues till the last layer i.e. the output layer where the last transformation 

of the weighted linear combination is computed. This completes one pass of the feed forward 

mechanism.  

After completing one forward pass of the feed forward mechanism, the loss function 

𝐿(𝑦𝑖, �̂�𝑖,𝑛𝑛) (which is a penalized version of MSE) is computed to determine the accuracy of the 

�̂�𝑖,𝑛𝑛  .The feed forward mechanism is repeated for E iterations/epochs (for e going from 1 to… 

E), such that in each subsequent epoch (𝑒 + 1), the accuracy of �̂�𝑖,𝑛𝑛  is improved by 

minimizing the loss function through back propagation. 

Back Propagation is the process through which a neural network “learns” i.e. it’s the 

algorithm through which a neural network determines the weights and biases required for 

minimizing 𝐿(𝑦𝑖, �̂�𝑖,𝑛𝑛). These optimal weights and biases for minimizing 𝐿(𝑦𝑖, �̂�𝑖,𝑛𝑛)  are 

determined from the gradient of the loss function. To determine the gradient of the loss function 

a popular method is stochastic gradient descent (SGD)9. The method is stochastic because it 

partitions the entire training sample into 𝑏 random sub-samples randomly. The use of random 

sub-samples increases the chances of finding the global (vis-a-vis the local minima) of the loss 

function in each epoch 𝑒. The weights and biases are updated for E epochs or till a stopping 

criterion is reached whichever comes first.  

As stated previously, the input layer being a column vector means that the data is 

revealed to each hidden node simultaneously. As a result the data is treated as being cross 

sectional because the spatial and sequential nature of the data is not exploited. Thus, we don’t 

estimate inflation using a fully connected feed forward neural network because it is dominated 

by more complex deep neural networks that can infer information from time series data.  

 

 

                                                           
9 An alternative to SGD is an extension of SGD called Adaptive Moment (ADAM) optimization. 
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3.5.1   Convolutional Neural Networks (CNN) 

The temporal structure of time series data means that values closer in time to each other have 

more in common than values separated by larger periods of time. Illustratively, time series data 

exhibits autocorrelation. Convolutional neural networks (CNNs) can extract information from 

the temporal structure of the data by a) preserving the spatial/ temporal structure of the data and 

b) using filters which look for patterns in spatially adjacent data. For instance, one filter could 

finding peaks, another could find troughs while another could find a linear trend. They achieve 

this by using convolutional layer which are not fully connected layers. 

A CNN consists of the following layers in the following order: one or more 

convolutional layer/s, subsampling layer/s, optionally followed by fully connected feed forward 

neural network/s and finally the output layer (see Figure 2).10 The first layer in a CNN is always 

a convolutional layer which is comprised of the input layer, filters and feature maps. The input 

layer preserves the temporal structure of the data by accepting data in a 3 dimensional format - 

𝑤𝑖𝑑𝑡ℎ1x ℎ𝑒𝑖𝑔ℎ𝑡1x 𝑑𝑒𝑝𝑡ℎ1. 𝑊𝑖𝑑𝑡ℎ1 is the number of the independent variables (𝑋𝑝),  ℎ𝑒𝑖𝑔ℎ𝑡1 

is the number of observations we assume to be related across time and 𝑑𝑒𝑝𝑡ℎ1 equals 1 in a 1D 

– CNN.  Instructively, refer to the input layer in Figure 2. Each column of nodes in the input 

layer represents a single independent variable. For P independent variables, there will be P 

columns of in the input layer. The height of each column (𝑇) is the number of time units for 

which we think the data is related. If we think that every 6 monthly set of data is related, T 

equals 6.   

The input nodes are not fully connected to the computational nodes. This is local 

connectivity is achieved through the process of convolution11. For a neural network, convolution 

is the matrix dot product of the input layer and the filter/s computed in the locally connected 

computational nodes12. The input layer is associated with one or more filters 𝒘𝑓 (for 𝑓  =

1, 2, … , 𝐹) . 𝒘𝑓 is a matrix of weights with dimensions 𝑛 x 𝑛 x 𝑑𝑒𝑝𝑡ℎ1 which looks for patterns 

in spatially adjacent subsets of data (𝑥𝑐 for c = 1,2, … 𝐶 ) 13. This is achieved by the filter 𝒘𝑓 

convolving over the input layer. That is the filter connects each subset 𝑥𝑐 to one computational 

node in the hidden layer where the dot product is computed and then transformed. This process 

is repeated sequentially for every subset 𝑥𝑐. This process achieves local connectivity. A hidden 

layer constructed with such locally connected nodes is called a feature map, an activation map 

or a convolved feature. Each additional filter (𝑤𝑓+1, 𝑤𝑓+2…..) gives a new convolved feature.   

As illustrated in Figure 2, the convolution layer is often followed by a subsampling 

layer 𝑃𝑓 of size 𝑚x𝑙 to further condense and amplify the feature maps14. The sub-sampling 

layers may be followed by a fully connected layer which is followed by an output layer 

                                                           
10 In cross sectional methods, it does not matter how the data is sorted but for CNN, LSTMs and Encoder Decoders it does. 

11 In mathematical terms, a convolution is an integral which measures the degree of overlap between two functions as one function passes over 

the other. 
12 This is equivalent to the weighted linear combination in the feed forward fully connected network  
13 n< 𝑤𝑖𝑑𝑡ℎ1 and n< ℎ𝑒𝑖𝑔ℎ𝑡1 
14 The total number of subsampling layers equals the total number convolved features which in turn equals the total number of filters. 
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following which back propagation takes place as described in (albeit with some modifications) 

till a stopping criterion is met to produce �̂�𝑖,𝑐𝑛𝑛. 

3.5.2 CNN -LSTM Neural Network 

In the feed forward networks considered hitherto (i.e. fully connected neural networks 

and CNNs) the information has a unidirectional flow: it goes from the input layer to the hidden 

layers to the output layer. A short coming of unidirectional networks is that they cannot store 

the history of a variable/s because they lack memory. Consequently, they are unable to extract 

any information from the sequential nature of time series data. Recurrent neural networks 

(RNNs) remedy this shortcoming. 

Like CNNs, the RNNs draw information from the temporal structure of the input data. 

However, unlike CNNs, they also draw information from the sequential nature of the data 𝑋𝑝,𝑖 

because they have memory.  This memory is used to inform the predictions made by the RNN. 

There are many RNN specifications to choose from and we chose the Long Short Term Memory 

(LSTM) RNN over a vanilla RNN as the former can learn from long sequences while the former 

may not.15 Thus, we consider a hybrid model which is a combination of a CNN and LSTM 

neural network. The combined method offers improvements over each individual method as it 

extracts information from both the spatial and sequential nature of time series data.  

The structure of a CNN+LSTM neural networks is as follows: the first layer is a 

convolutional layer/s, followed by an LSTM layer/s, followed by fully connected layer/s which 

(as always) gives �̂�𝑖,𝑐𝑛𝑛+𝑙𝑠𝑡𝑚 as a non-linear transformation of a weighted sum, followed by 

back propagation to optimize the model weights. The structure of the CNN network is as 

described in the previous section. Here we focus on the architecture of the LSTM network. 

Consider Figure 3. As the name suggests, LSTM networks have both long term and 

short term memory. Intuitively, one can think of LSTM nodes as more complex computational 

nodes in the hidden layer in a neural network. In part, the complexity arises from the differing 

manner in which data is revealed to the computational nodes. In a fully connected neural 

network, all the data is seen by the computational node at once because the data is stored 

without structure. However, data is reveled to an LSTM node in a sequential manner allowing 

it to learn from a sequence of values in an iterated and incremental fashion. This iterated and 

incremental learning is due to the looped/rolled structure of an LSTM node. 

Each input node in an LSTM network as a vector 𝒙𝒑 which is composed T observations 

from independent variable 𝑋𝑝. T is the length of the sequence (i.e. past data) we want the LSTM 

network to remember and learn from (this T is similar to the T used in CNNs). Each observation 

t in 𝒙𝒑 is revealed to each LSTM node sequentially which allows the LSTM node to compute 

both the long term memory and the working memory. Based on the updated long term memory, 

the LSTM cell updates the working memory. The updated working memory at the last element 

                                                           
15 For more on this topic see the vanishing gradient problem for RNNs. 
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of the sequence is the output of an LSTM node. The LSTM layer is may be followed by a fully 

connected layer, which is then followed by the output layer. 

3.5.3 Encoder Decoder  

We consider an encoder decoder model belonging to a broader class of models called 

sequence to sequence (Seq2seq) models which translate sequences from one domain (such as 

a sentence in French) to a sequences in another domain (such the same sentence translated to 

Hindi). 

An encoder decoder is composed of two sub-models: one is the encoder that reads input 

sequences and converts it to an internal representation which is the neural networks 

understanding of the data. The decoder is an output mode which takes the encoded 

representation (i.e. the understanding of the network) and its own predictions to previous 

portions of the encoded sequences to predict the output. That is “the decoder allows for the 

model to make predictions that fit with the context established in its earlier predictions” 

(Smalter Hall and Cook, 2017).  

In time series forecasting, using an Encoder Decoder model amounts to translating the 

past into the future. The available history of the concerned time series is encoded, allowing the 

encoding of patterns like seasonality and trend, conditional on which predictions are made. In 

the Encoder Decoder model used by us, the encoder is a CNN which has proven very effective 

in learning the features of our data while the decoder is an LSTM model. Both the CNN and 

LSTM work as described in the preceding two sections. 

3.5.4 Hyper-parameters for DNNs 

 Using grid search we determine the hyper-parameters in Table 2 to determine the neural 

network parameters i.e. the weights. Every neural network requires a stopping criterion for the 

training process to prevent the neural network from over fitting on the training data as a neural 

network can achieve an arbitrarily low MSE in-sample. A popular stopping criterion is the total 

number of epochs i.e. the number of times a network under goes back propagation. Too few 

epochs could result in the optimal function not being reached while too many epochs might 

result in over training. Given that we don’t know the critical values at which under-estimation 

transitions into over-fitting, we use an alternate popular stopping criterion is to stop training the 

neural network once the forecasting error for the validation sample stops decreasing for a certain 

number of epochs called ‘patience’. 

Batch size is the number of observations in each random sub-sample for SGD to update 

the weights. The smaller the batch size, the larger the number of random samples, the greater 

the generalizability of the estimated function. The learning rate controls the amount by which 

the weights are updated during back propagation. Usually, smaller batch sizes are paired with 

larger number of epochs.A very high learning rate may result in the back propagation algorithm 

not finding the minima of the function. A very low learning rate guarantees finding the minima 

but slows down the algorithm significantly. A good rule of thumb is to start from smaller 

learning rates and batch size and the progress to higher values. 
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Currently, “there is no universally accepted analytical way to determine the optimal 

number of neurons and layers for a given classification or regression application, adding large 

"degrees of freedom" to the estimation of neural networks” (Jung, Patnam and Ter-Martirosyan 

,2018). Some rules of thumb suggested in the academic literature are "somewhere between the 

input layer size and the output layer size" (Blum, 1992) and "as many hidden nodes as 

dimensions needed to capture 70-90% of the variance [in] the input data" (Boger and Guterman, 

1997). However, in practice, the optimal number of layers, nodes and filters is determined 

though out-of-sample testing (Tkacz and Hu, 1999).  

Note that having multiple filters in the convolutional layer results in a hierarchical 

structure – the first filter helps discern the simplest features from the data (like a linear trend) 

while each subsequent filter discerns increasingly complex features from the data (such as 

pro/anti-cyclical activity). We also use Batch normalization between the convolutional layer 

and the LSTM layer. Batch normalization transforms the activations (i.e. output) of the 

previous layer such that the mean activation is close to 0 and the activation standard deviation 

reaches 1. Batch normalization accelerates the training process of the neural network and may 

improve model performance by penalizing complexity marginally i.e. by having a 

regularization effect. 

Given that there is no previous literature for the estimation of multivariate machine 

learning models for India, we choose Grid Search to find and select our optimal 

hyperparameters. We choose grid search instead of random search because we do not have any 

priors regarding which hyperparameter is more important and thus presume all 

hyperparameters are equally important. In the presence of a prior regarding relative importance 

of hyperparameters, random search would be a better choice as it would allow greater 

exploration of the possible values of that parameter16.  

We use a rolling window approach to train and test our model (for the neural network 

as well as all other models) as this will allow for structural change in the parameters. Figure 4 

presents a graphical depiction of this approach. Given that machine learning models benefit 

from longer series of data, we set the window size to total number of observations minus the 

total number of observations to be forecasted. First we specify the model, the Grid Search 

parameters and then check its accuracy across all the windows. For each window, the machine 

learning model is fit as follows (see figure 4): 

Each window is divided into two parts: the training period and the out-of-sample testing 

period. 10% of the total observations in the window form the out-of-sample data while the 

remaining comprise the training data. The out-of-sample set is further divided into two parts: 

the validation data and the testing data. Of the out-of-sample set, the last observation is the test 

data and the remaining observations form the validation data.  Each machine learning model is 

fit on the training data and is validated for accuracy in the validation sample. Thus, for W 

windows, average validation MSE is  

                                                           
16 A “Gaussian process analysis of the function from hyperparameters to validation set performance reveals that for most 

data sets only a few of the hyper-parameters really matter, but that different hyperparameters are important on different data 

sets”. (Bergstra and Bengio, 2012) 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑀𝑆𝐸 =  
1

𝑊
∑ 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑀𝑆𝐸𝑖

𝑊

𝑖=1

 

 

The model with the lowest average validation MSE is chosen as the best model. The 

best model is then used for forecasting the testing observation in each window. Given that the 

last observation is of every window is the testing window, the number of windows equals the 

number of testing observations. 

Additional Concerns while Training a Neural Network 

 The “training process for a neural network is subject to stochasticity” (Smalter Hall and 

Cook, 2017). First, the initial weights for each neural network are small random weights not 

equaling to zero.17  Second, the use of random sub samples in the optimization process. Third, 

we use ‘dropout’ which is a regularization techinque whereby the neural network ignores the 

output of a randomly selected subset of nodes to limit the “over-dependence of the model on 

any one node” and thus reduce the potential for over-fitting (Smalter Hall and Cook, 2017) . As a 

consequence of this stochasticity, training the same model repeatedly results in different weights 

and thus different forecasts in each run. To accommodate this variance, we train 30 instances 

of each model, allowing the computation of expected model accuracy across multiple runs of 

the same model. Thus, to select the best neural network architecture, we choose the architecture 

which gives the lowest 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑀𝑆𝐸 across 30 runs of each rolling window. 

Furthermore, given that we use a rolling window approach to estimation, the weights of the 

model are updated by each new window, allowing the weights to be updated iteratively. 

 

4. Empirical Analysis 

 In this section, we present the results for forecasting error that result under the various 

methods considered in the previous section. Our principal variable for forecast is the headline 

CPI inflation (y-o-y) at varying horizons for 3 emerging market economies: India, China and 

South Africa. We forecast y-o-y inflation because it has lower seasonality and volatility than 

month on month (m-o-m) inflation. We choose the lowest available frequency for both the 

dependent variables which is the monthly level. The data for India is obtained from CEIC while 

the data for China and South Africa is obtained from the FRED database.18  Table 3 presented 

the data period used for each country as well. The unit of observation used for analysis is data 

at the monthly level.  

 

                                                           
17 Importantly, “if the weights are near zero, then the operative part of the sigmoid is roughly linear, and hence the neural network 

collapses into an approximately linear model. Hence the model starts out nearly linear, and becomes nonlinear as the weights 

increase” (Hastie, Tibshirani and Friedman, 2017). 

18 To calculated the CPI inflation (y-o-y) we use the CPI (Combined - 2012 base year) series as calculated by the Central Statistical 

Organization (CSO), India and rebase it using the IMF CPI series. 
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4.1 Data Preparation 

For each dependent variable, we choose independent variables based on the following two 

criterions: 

1) is the variable available for the entirety of the training and testing period? 

2) if the answer to (1) is yes, is the variable available at the monthly level? 

If a variable meets these two criterions, we use it for forecasting the dependent variable under 

consideration. Beyond these two criterions, we do not use any other filter to choose the 

independent variables.  

 Broadly, the suit of independent variables considered fall into the following categories 

: WPI and its Subcomponents, CPI and its Subcomponents, food related indicators, oil related 

indicators, automobile industry indicators, electricity generation related indicators, monetary 

policy and finance related variables and trade related variables. Additionally, for China and 

South Africa, the OECD Composite Leading Indicators (CLI) are also included as independent 

variables ((See Appendix A: Table 1 - 3 for more details).  

 Given that our dependent variables measure the y-o-y change, we transform each 

independent variable into its y-o-y change equivalent. Next given that we are using a rolling 

window approach, in each window we normalize the data in the training sample because 

machine learning methods are not scale invariant, especially deep neural networks. In fact, for 

the deep neural networks, after normalization, the data is rescaled to a suitable range (-1 to 1 

in our case) as DNNs are not invariant to the magnitude of the data. The normalizing constants 

(mean and standard deviation) and the rescaling parameters from the training sample are used 

to normalize and rescale the data in the validation and testing samples to ensure that the out-

of-sample data does not have a look forward bias. 

For each forecast horizon h, we start from the hth  lag and include a maximum of 12 lags  of the 

dependent variable and each independent variable for each forecast horizon for each country. 

Thus, the 1 month ahead forecast uses the 1st to 12th lags while the 12 month ahead forecast 

only uses the 12th lag. This allows us to investigate the effectiveness of machine learning 

models both in scenarios where N<P and N>P. 

 

4.2 Results for India 

We start with a comparison of the RMSE and the MAE for all the ML models at various 

horizons (1 month to 12 months) in Table 4. At the one month horizon, we find that the 

naïve/MA model performs the best when either RMSE or MAE are considered. In particular, 

the MAE for the naïve forecast is 0.46% whereas the best neural network method has a 

forecasting error of 0.57%. Thus, given that our average inflation rate in the testing period is 

3.58%, this corresponds to an error of 12.85% (15.92% relative to this average value). 

However, the key power of the neural network approach comes about for longer 

forecasting horizons. In particular, for the 3 month ahead forecast, the naïve forecast error 

increases to 1.13%, which is a large error of almost 31.56%. Most of the other linear models 



19 
 

(shrinkage and tree bases models) have similar or worse performance relative to the naïve 

forecast. In contrast, the neural net models have a forecast error between 0.5% to 0.68% which 

is a huge increase in forecasting ability relative to the benchmark model as well as all other 

methods. In terms of forecasting error, the reduction in forecasting error of the best neural net 

model (CNN+LSTM) relative to the benchmark model is 48.15% if one considered the RMSE, 

and 55.54% if one considered the MAE. Another interesting feature that comes out here is that 

all the other non-neural network methods used (shrinkage and tree based models) have worse 

performance relative to the naïve model for this horizon of forecast.  

Next, we examine the 6 month forecast performance. Here again, the best neural 

network model (CNN) has a lower forecast error using the MAE relative to the naïve forecast 

by 56.3%. It is also important to note that other neural net methods – encoder decoder and 

CNN+LSTM also perform much better, reducing the forecast error by 47%-48%. In contrast, 

the best possible non-neural net method – the elastic net – has a forecast error improvement of 

27.27% relative to the benchmark model.  

Note also that the absolute error of the forecast (regardless of the model) goes up for 

the longer forecasting horizon. Here again, the increase in forecast error of the 3 month relative 

to the 1 month is around 145% (1.13% relative to 0.46% using the MAE). In contrast, for the 

best neural network model, the increase in forecast error measured by the MAE is much more 

modest 19.26% (0.571 to 0.682) for the encoder-decoder. This pattern continues even for the 

12 month forecast where the naïve model has a forecast error of 1.16%, while the encoder 

decoder has a forecast of 0.84%. In contrast to these two methods, almost all the other methods, 

whether they be SARIMA or shrinkage models, show huge increases in forecast error which 

essentially make them irrelevant tools for prediction at the one year horizon, as they have much 

larger prediction errors relative to the naïve model.  

It is clear from the above table that shrinkage or tree based models are not particularly 

useful for inflation prediction in India. This is not surprising in the light of the earlier discussion 

that these methods are not well suited to the time series setting, especially in the presence of 

structural change and non-stationarity. India has undergone a lot of structural changes in the 

last two decades, and in particular, has moved to an explicit inflation target in the last 5 years. 

One counter argument to the above is to use parameters estimated with a limited time series 

focusing on the recent past. However, we already incorporate this approach using the rolling 

window estimation for all the methods. Thus, any structural change that can be captured is 

already done so at least in the sense of ignoring all observations prior to the rolling window 

period. Thus, this result suggests that shrinkage and tree based models are fundamentally 

unsuited to inflation forecasting in the Indian context. 

The above analysis implies that neural network methods dominate other method 

learning methods, linear methods and naïve forecasts. However, an alternate ‘popular’ metric 

used, as evidenced from the above press articles, for evaluating accuracy of a given method is 

the number of times it provides an overestimate relative to an underestimate. It is feasible that 

non-linear methods may have lower absolute and square error, but may still be subject to 

average bias. To evaluate this, we tabulate the number of times each method provides an 

overestimate relative to the actual inflation. Recall that the training period was in the pre-

demonetization period, prior to the large crash in food and vegetable prices post-

demonetization, while the testing period does include the large crash in food prices.   
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This is also motivated by a large degree of interest in the press and policy circles that 

the Reserve Bank of India was consistently overestimating inflation rates. In an article titled 

“Has RBI consistently overestimated inflation forecasts,” published in LiveMint, 2017, the 

author Tadit Kundu argues that RBI has been consistently overestimating inflation in 2015-

2016. At the same time, this article argues that this is true for other central banks as well and 

that this is true for professional forecasters as well.19 On the other hand, a Mint Street Memo 

authored by Raj et al (2019) argues that the large forecast errors were attributable to large 

unanticipated food price shocks, and that countries with high share of food prices in their CPI 

baskets tended to have higher forecast errors. The authors further argue that RBI forecasts did 

not have any bias if one excluded the demonetization period and compared favorably to other 

central banks, especially if one considered the fact that inflation in India is much more volatile.  

Thus, one might expect that most methods have a fraction of observations with 

overestimate to be greater than 50%, although unbiasedness in the long run implies that this 

fraction should be close to 50%. Table 5 presents the results of this analysis. For the 1 month 

forecast, the naïve forecast has a fraction of overestimates of 56.67%, which is the closest to 

the 50%. On the other hand, shrinkage and tree based models have a large positive bias with 

overestimate fractions ranging from 70%-90%, while neural network methods have 

overestimate fractions ranging from 30% to 64%. If one took an average of the neural networks, 

this works out around 51.3%, which is quite close to the expected fraction of 50%. 

For the 3 month forecast, the naïve forecast overestimates inflation 70% of the time. 

Shrinkage and tree based models also perform poorly with overestimate fractions ranging from 

66.67% to 90%. In contrast, neural networks have overestimate fractions ranging from 46.67% 

to 76.67%, which implies an average overestimate fraction of 57.45% which is much closer 

than the other methods. This continues for the other horizons.  

An observation that is pertinent to mention here is that the average of the 3 neural 

network method has an overestimate fraction that is much closer to 50% relative to each 

individually. This suggests that an average of the forecasts of these 3 methods may perform 

much better than each of them, a topic to which we will return towards the end of this section.  

Interestingly, the Wilcoxson statistics that tests for the difference in distribution of the 

predicted and actual values implies that the distribution of neural net forecasts does not differ 

significantly from the distribution of the actual inflation for almost all horizons, with the 

exception of the exception of the CNN+LSTM forecast for the 3 and 9 month horizon. On the 

other hand, almost all other method forecast differ significantly from the realized values, 

suggesting that neural network methods are likely to be significantly better even at forecasting 

the distribution of the realized values. We leave an evaluation of the distribution of the quantiles 

of the inflation for a future revision of this paper.  

 

4.3 Time Series Examination 

The previous sub-section examined the average performance of various methods in 

forecasting inflation. To enhance ease of interpretation, we focus only three variables for the 

time series analysis – the actual inflation, the best benchmark method (the naïve forecast in all 

                                                           
19 “Inflation targeting: Did India sleepwalk into a disaster,” Economic Times, Dec 21, 2018 
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cases) and the best machine learning (always one of the three methods of estimation for neural 

network for all forecast horizons above 1 month). In each case, the best method is defined by 

the one with the lowest RMSE. 

Figure 5A shows the time series performance of 1 month forecasts for naïve and best 

machine learning forecast relative to actual. It is clear that both the naïve and the best machine 

learning overestimate inflation in the period when inflation was reducing – from Oct 2016 to 

June 2017. In the period from July 2017 to April 2018, both methods underestimate the actual 

inflation. Similarly, from June 2018 to the end our sample period, both methods overestimate 

the true inflation. One pattern that emerges for the 1 month horizon is that both methods lag 

the true inflation and underestimate inflation in periods of increasing inflation and overestimate 

inflation in periods of reducing inflation.  

Next, in figure 5B, we present a similar analysis for the 3 month forecast. One important 

fact that emerges is that the tracking error for both methods is much larger than that in the 1 

month forecast. At the same time, it is clear that the naïve forecast is much worse relative to 

the actual inflation. Interesting, the machine learning model over predicts the dip in inflation 

during the demonetization and overpredicts the bounce-back as well. However, from May 

2018, the model tracks actual inflation quite well and in fact, predicts the turning points quite 

well.  

Figures 5C, 5D & 5E provide these comparison for the 6 month, 9 month and 12 month 

horizons.  At the 6 month horizon (Figure 5C), both methods have a significant deterioration 

in performance. The demonetization episode registers for the machine learning methods while 

the naïve forecast completely misses it. From June 2017 to July 2018, the best ML method 

shows a marginal increase, while the naïve forecast has the wrong direction of the trend as well 

as a very large forecasting error. In the post June 2018 period, the best ML method tracks the 

direction as well as the magnitude of the actual inflation very well.  

In contrast, at the 9 month and 12 month horizon, the performance of the best ML 

methods improves substantially. With the exception of the large inflation dip in June 2017, ML 

captures both the direction as well as magnitude of the actual inflation very well. It also 

performs well in the pre-demonetization period. In both cases, the naïve forecast varies little as 

anticipated.  

 

4.4 Results for other emerging markets 

 Next, we examine the extent to which our results are generalizable using two other 

emerging markets – China and South Africa. We only estimate the neural network models as 

the results for the other methods were significantly poorer for all the other methods. Also, we 

focus only on the 12 month forecast, as this had the largest prediction error. A first difference 

of the results relative to India is that SARIMA performs much somewhat better for South Africa 

relative to the MA or naïve forecast. Hence, the benchmark model for South Africa we uses is 

the SARIMA model, while for China, the naïve or MA forecast performs much better relative 

to SARIMA, as was the case with India.   

 Table 6 presents the results of this estimation. For China, the improvement in 

performance using neural networks is much more modest, ranging from 5.8% for the encoder 
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decoder technique and 33.42% for the CNN-LSTM model for the MAE measure. The increase 

in accuracy using RMSE are even smaller. On the other hand, for South Africa, using neural 

networks enhances the forecasting ability significantly, with decreases in MAE ranging from 

42% to 57%.   

In Table 7, we present the results of the fraction of forecasts that were overestimates. 

For China, the naïve forecast does very well, overestimating the realized inflation around 46% 

of the time. In contrast, South Africa appears to be much more similar to India in that both the 

naïve forecasts are overestimated for a large fraction of the testing sample (between 86% and 

90%). For South Africa, using neural network methods improves the fraction of times that 

overestimation happens. 

 Figure 6 presents the time series of 12 month forecasts using the best machine learning 

method and the actual inflation rates along with the benchmark model for China. This figure 

suggests quite a different picture relative to the comparisons in Table 6. In particular, the 

benchmark model is quite smooth and does not reflect a lot of the dynamics of the inflation 

rate. In contrast, the machine learning model has much more variable predictions, which, at 

least in a visual sense, vary more with the data. There are notable exceptions – the peak in July 

2018 and the trough in Feb 2019, both of which are completely missed by the machine learning 

algorithm. In contrast, for both of these episodes, the benchmark model, by virtue of its relative 

flatness happens to be much closer to the realized inflation.  

 Figure 7 presents the time series results for the 12 month ahead forecast for South 

Africa. Quite clearly, the results are in line with the increase in forecasting ability based on the 

MAE and RMSE results. In addition, the neural network method captures the overall decrease 

in inflation from June 2017 to March 2018 and the reversal. The benchmark model’s overall 

trends are completely reversed – it predicts an increase in this period, and then predicts a 

decrease from Feb 2018 onwards, when actual inflation was increases. Nevertheless, even for 

the neural network methods, there are sub-periods when the prediction diverges significantly 

from the actual. In May 2017, actual inflation decreased significantly while the neural net 

predicted an increase till July 2017. In June 2018, ML predicted a sharp decrease in inflation 

while actual inflation increased.   

 

4.5 Combined neural net forecast 

 One of the issues that came up in earlier sections is that the bias in the different neural 

network forecasts seemed to be in opposite directions in several cases. As we had alluded to 

earlier, this suggested that a combined forecast using the different neural network methods may 

be better than each of these individually. To test this, we combine the three forecasts by 

averaging them and recompute the accuracy of the resulting forecast. Tables 8A and 8B give 

the results of this approach. We find large increases in forecast accuracy using the combined 

forecast especially for China where the increase in forecast accuracy using MAE increases to 

30%. The direction fraction of overestimate also comes much close to 50%.  

 

4.5 Variable importance  



23 
 

 Recall we had mentioned in the introduction that one of the disadvantages of the neural 

net methods is that it is not feasible to estimate the partial effects of each individual variable. 

One approach that partially alleviates this ‘black-box’ nature of this disadvantage is an analysis 

called ‘variable importance’, which describes “how much a prediction model’s accuracy 

depends on the information in each covariate” (Fisher, Rudin, and Dominici, 2018). For each 

machine learning method under consideration, we attempt to understand which independent 

variables contribute most significantly to the forecast accuracy i.e. which variables contribute 

most significantly to a reduction in the MSE. For each forecasting horizon, we determine the 

variable importance for the best performing machine learning method. 

 Given that we are considering three disparate classes of machine learning models, we 

use a different measure of variable importance for each class. For each shrinkage (linear) 

method, we compare the absolute size of the coefficients of the independent variables. The 

larger the absolute value of the coefficient, the more important the variable is to the accuracy 

of the forecast (and vice-versa).  

 For tree based methods, the importance of each independent variable is gauged by 

examining decline in the RSS achieved by splitting the sample using a given independent 

variable, averaged over all the bootstrapped trees. The larger the reduction in the RSS, the more 

important the independent variable is (and vice versa).   

 The deep neural networks are the most difficult to interpret. We use a simple but 

effective approach known as model reliance (MR) as proposed by Fisher, Rudin, and 

Dominici (2018). MR “measures the importance of a feature by calculating the increase in 

the model’s prediction error after permuting the feature” but leaving all the other 

independent variables and dependent unchanged (Molnar, 2019)20. Permuting/shuffling an 

independent variable breaks the relationship between the independent variable and the 

dependent variable. The shuffling approach is especially appropriate for deep neural 

networks as random shuffling invalidates the spatial and temporal information in time series 

data. Effectively, this creates an unconditional counterfactual for 𝑋𝑝. An independent 

variable is important if shuffling its values increases the MSE as this indicates that the model 

relied on the actual realization of the independent variable for forecasting  �̂�𝑖.  The 

permutation variable importance (𝑃𝐼𝑉𝑝) is calculated as follows: After having trained the 

model we arrive at the final MSE for the deep neural network (𝑀𝑆𝐸𝑟𝑒𝑎𝑙). Then, for each 

variable 𝑋𝑝 , the following is repeated :  

Step 1:  𝑋𝑝 is randomly shuffled leaving all the other independent variables and 𝑦𝑖 

unchanged 

Step 2: Using the dataset with the shuffled 𝑋𝑝 , �̂�𝑖 is forecasted again to arrive at the 

new MSE ( 𝑀𝑆𝐸𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑,𝑝).  

                                                           
20 In machine learning literature, features refer to independent variables 
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Step 3: Given that the permutation process is inherently random, we repeat Steps 1 

and 2 a 100 times and calculate the mean of 𝑀𝑆𝐸𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑,𝑝 across the 100 iterations 

(𝑀𝑀𝑆𝐸𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑,𝑝).  

Step 4: 𝑃𝐼𝑉𝑝 is calculated as follows 

 
𝑃𝐼𝑉𝑝 =  (

𝑀𝑀𝑆𝐸𝑝𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑
− 𝑀𝑆𝐸𝑟𝑒𝑎𝑙

𝑀𝑆𝐸𝑟𝑒𝑎𝑙
)  100 

 

 

Variable Importance Results: India 

We determine the 10 most important variables for each of the best performing machine 

learning models for each horizon for India. For the 1 month ahead forecast - where the best 

performing machine learning model was the linear elastic net model- we find that the only non-

zero coefficient and thus the most important variable is the first lag of CPI (Y-o-Y). It is found 

that for the 3 months ahead, 6 months ahead and 12 months ahead forecasts, the sub-components 

of CPI and WPI, food, fuel and banking related variables contribute most significantly to the 

accuracy of the relevant forecast, which is broadly in line with the literature on the determinants 

of CPI in India. The results for the 9 months ahead forecast find lags of rainfall and Net FII and 

FPI to be the most importance variables for forecasting CPI in India.  

Conclusion 

 We conducted an analysis for three emerging markets – India, China and South Africa 

using a variety of machine learning methods. Out of the approaches used, neural networks were 

most effective in reducing forecast errors relative to SARIMA or naïve forecasts. This suggests 

that neural networks are a good potential approach for forecasting inflation for other emerging 

economies where there are less number of cross-sectional and time series of data available. 

Future research would compare on how the forecasts in this compare to professional forecasters 

and central banks.  
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Tables 

Table 1: Hyper parameters for Tree Based Methods 

Hyper-parameters Hyper-parameters Domain 
Random 

Forests 

XG 

Boosted 

Trees 

Max Tree Depth 1,depth till only pure leaves x x 

Min. Samples for Splitting a Node 2,No. of Obs. x x 

Min. Samples to form a Leaf 1,No. of Obs. x x 

Max. no. of Leaf Nodes in a Tree 1, No. of pure leaves  x x 

No. of Independent Variables to 

Consider to Find Best Split for a Node 

1, No. Independent Variables x x 

No. of Trees 1, ∞ x x 

Columns Sample by Tree (%) ε,1  x 

Columns Sample by Level (%) ε,1  x 

Columns Sample by Node (%) ε,1  x 

L1 Regularization 1, ∞  x 

L2 Regularization 1, ∞  x 

Learning Rate 0,1  x 

Parameters Threshold variables and values 
*the x denotes that the hyper parameter is needed for the model under consideration  

Table 2: Hyperparameters for Neural Networks 

Hyperparameter Hyperparameter Domain CNN 
CNN+ 

LSTM 

Encoder 

Decoder 

Patience 0, ∞ x x x 

Learning Rate 0,∞ x x x 

No. of Epochs 0,∞ x x x 

Optimizer Type SGD/ADAM x x X 

Batch Size 1, No. of Obs. x x x 

No. of Steps In 1, No. of Obs. in Test Set x x x 

No. of Conv. Layers 1, ∞ x x x 

Conv. Activation Layer Type Linear/ Tanh /Logistic/ReLU x x x 

No. of Filters per Conv. Layer 1, ∞ x x x 

Filter Size 1, No. of Steps In*No. Independent Variables x x x 

Stride Size 1, ∞ x x x 

Sub-sampling Layer type Max Pooling / Average Pooling x x x 

Sub-sampling Layer Size 1, No. of Steps In – Filter Size  x x x 

No. of Dropout layers 0,No. of Hidden Layers x x x 

Dropout Percentage 0,1 x x x 

No. of Full Connected Hidden Layers 0, ∞ x x x 

No. of Hidden Nodes 0, ∞ x x x 

Batch Normalization Yes/No x x x 

Output  Layer Activation Type Linear, Tanh, Logistic, ReLU x x x 

No. of LSTM layers 1, ∞  x x 

No. of LSTM nodes 1, ∞  x x 

No. Repeat Vector  1, ∞   x 

Parameters Network weights 
*the x denotes that the hyper parameter is needed for the model under consideration  
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Table 3:  Sample Construction 

Count

ry 
Full Period 

Window 

Size 

Training 

Obs. per 

Window 

Validation 

Obs. per 

Window  

Test 

Obs. per 

Window 

Consolidated 

Testing Period 

No. of 

Independent 

Variables 

India 1st Jan 03 – 1st Feb 19 

(195 obs.) 153 138 14 1 

1st Sep 16  – 1st Feb 

19 

(30 obs.) 

48 

China 1st Jan 03 – 1st July 19 

(200 obs.) 158 142 15 1 

1st Feb 17 – 1st July 

19 

(30 obs.) 

30 

South 

Africa 

1st Jan 03 – 1st July 19 

(200 obs.) 158 142 15 1 

1st Feb 17 – 1st July 

19 

(30 obs.) 

60 
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Table 4 : India: 1 Month to 12 Month Ahead Forecasts 

Horizon Category Method RMSE MAE 
RMSE Accuracy 

Increase (%) 

MAE Accuracy 

Increase (%) 

1 Month 

Ahead 

Benchmark Model 
SARIMA 2.388 1.932 -318.500 -316.24 

MA/Naive 0.571 0.464   

Shrinkage Models Elastic Net 0.622 0.510 -8.917 -9.97 

Tree Based Models 
Random Forests 1.414 1.237 -147.752 -166.57 

XG Boost 1.191 0.877 -108.798 -88.84 

Neural Networks 

CNN 0.962 0.773 -68.526 -66.43 
CNN+LSTM 0.773 0.592 -35.487 -27.55 

Encoder Decoder 0.722 0.571 -26.449 -22.93 

 

3 Months 

Ahead 

Benchmark Model 
SARIMA 2.388 1.932 -79.713 -70.89 

MA/Naive 1.329 1.130   

Shrinkage Models Elastic Net 2.419 2.099 -82.040 -85.66 

Tree Based Models Random Forests 2.211 1.928 -66.398 -70.59 
 XG Boost 1.585 1.151 -19.313 -1.85 

Neural Networks CNN 0.800 0.606 39.774 46.37 
 CNN+LSTM 0.689 0.503 48.152 55.54 
 Encoder Decoder 0.854 0.682 35.700 39.65 

6 Months 

Ahead 

 Benchmark Model 
SARIMA 2.388 1.932 -32.137 -18.13 

MA/Naive 1.807 1.635   

Shrinkage Models Elastic Net 1.521 1.189 15.826 27.27 

Tree Based Models Random Forests 1.735 1.391 3.973 14.92 
 XG Boost 1.903 1.564 -5.282 4.38 

Neural Networks CNN 0.922 0.715 48.987 56.30 
 CNN+LSTM 1.065 0.839 41.063 48.69 
 Encoder Decoder 1.074 0.866 40.542 47.04 

9 Months 

Ahead 

Benchmark Model 
SARIMA 2.388 1.932 -36.12 -25.71 

MA/Naive 1.754 1.537   

Shrinkage Models Elastic Net 2.208 1.790 -25.86 -16.50 

Tree Based Models Random Forests 3.184 2.848 -81.50 -85.30 
 XG Boost 1.474 1.163 15.99 24.33 

Neural Networks CNN 1.032 0.830 41.18 46.02 
 CNN+LSTM 1.106 0.785 36.98 48.91 
 Encoder Decoder 0.730 0.558 58.37 63.67 

12 Months 

Ahead 

Benchmark Model 
SARIMA 2.388 1.9317 -63.52 -66.06 

MA/Naive 1.460 1.1633 0.00 0.00 

Shrinkage Models Elastic Net 2.610 2.3122 -78.75 -98.76 

Tree Based Models Random Forests 2.995 2.7957 -105.10 -140.32 
 XG Boost 2.203 1.8550 -50.86 -59.46 

Neural Networks CNN 0.888 0.6858 39.21 41.05 
 CNN+LSTM 0.846 0.6446 42.08 44.59 
 Encoder Decoder 1.088 0.8483 25.47 27.08 
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Table 5: Forecast Bias - India: 1 Month to 12 Months Ahead Forecasts 

Horizon Category Method Over Estimate (%)  Wilcox Statistic: Forecast 

1 Month 

Ahead 

Benchmark Models  
SARIMA 90.00 10*** 

MA/Naive 56.67 194 

Shrinkage Model Elastic Net 70.00 63*** 

Tree Based Models 
Random Forests 90.00 10*** 

XG Boost 80.00 57*** 

Neural Networks 

CNN 30.00 161.13 

CNN+LSTM 64.19 129.06 

Encoder Decoder 60.00 192.03 

3 

Months 

Ahead 

Benchmark Model  
SARIMA 90.00 10*** 

MA/Naive 70.00 137* 

Shrinkage Model Elastic Net 86.67 24*** 

Tree Based Models Random Forests 90.00 7*** 

 XG Boost 66.67 126* 

Neural Networks CNN 46.67 218 

 CNN+LSTM 76.67 97** 

 Encoder Decoder 49.03 210.84 

6 

Months 

Ahead 

Benchmark Model  
SARIMA 90.00 10*** 

MA/Naive 70.00 135* 

Shrinkage Model Elastic Net 70.00 59*** 

Tree Based Models 
Random Forests 76.67 46*** 

XG Boost 83.33 41*** 

Neural Networks 

CNN 43.01 168.06 

CNN+LSTM 47.31 201.03 

Encoder Decoder 47.31 203.29 

 

Level of significance: * 5% , **1% , ***0.1%  
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Table 5 (continued): Forecast Bias - India: 1 Month to 12 Months Ahead Forecasts 

9 

Months 

Ahead 

Benchmark Model  
SARIMA 90.00 10*** 

MA/Naive 63.33 128* 

Shrinkage Model Elastic Net 73.33 85*** 

Tree Based Models 
Random Forests 100.00 0*** 

XG Boost 73.33 59*** 

Neural Networks 

CNN 43.33 195 

CNN+LSTM 82.58 45.16*** 

Encoder Decoder 64.52 132.23 

12 

Months 

Ahead 

Benchmark Model  
SARIMA 90 10*** 

MA/Naive 70.00 87*** 

Shrinkage Model Elastic Net 86.67 19*** 

Tree Based Models 
Random Forests 100.00 0*** 

XG Boost 66.67 89*** 

Neural Networks 

CNN 36.67 169 

CNN+LSTM 65.59 147.06 

Encoder Decoder 53.44 208.94 

Level of significance: * 5% , **1% , ***0.1%  
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Table 6: Emerging Market Forecasts - 12 Months Ahead Forecast 

Country Category Method RMSE MAE 

RMSE 

Accuracy 

Increase (%) 

MAE 

Accuracy 

Increase (%) 

China 

Benchmark 
SARIMA 1.012 0.911 -87.48 -104.08 

MA/Naive 0.540 0.447 0.00 0.00 

Neural Networks 

CNN 0.527 0.365 2.27 18.23 

CNN LSTM 0.407 0.297 24.63 33.42 

Encoder Decoder 0.526 0.420 2.49 5.85 

South 

Africa 

Benchmark 
SARIMA 1.217 1.112   

MA/Naive 1.418 1.145 -16.52 -2.963 

Neural Networks 

CNN 0.635 0.518 47.85 53.400 

CNN LSTM 0.590 0.469 51.52 57.849 

Encoder Decoder 0.809 0.643 33.48 42.176 

 

 

 

Table 7: Emerging Market Forecasts - 12 Months Ahead Forecast – Forecast Bias 

Country Category Method 

Over 

Estimate 

(%)  

Wilcox 

Statistic: 

Forecast 

China 

Benchmark 
SARIMA 100 0*** 

MA/Naive 46.66 163 

Neural 

Networks 

CNN 60.00 168.03 

CNN LSTM 37.42 158.29 

Encoder Decoder 63.33 202.00 

South 

Africa 

Benchmark 
SARIMA 86.67 45*** 

MA/Naive 90.00 42*** 

Neural 

Networks 

CNN 53.33 195 

CNN LSTM 70.00 106*** 

Encoder Decoder 62.69 154.0323 
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Table 8A: Neural Network Consensus Model – Forecast Accuracy 

Country  Horizon Method RMSE MAE 

RMSE 

Accuracy 

Increase (%) 

MAE 

Accuracy 

Increase (%) 

India 1 Month Average NN 0.613 0.517 -7.46 -11.35 

 3 Month Average NN 0.604 0.458 54.55 59.52 

 6 Month Average NN 0.877 0.725 51.45 55.66 

 9 Month Average NN 0.699 0.582 60.17 62.13 

 12 Month Average NN 0.710 0.559 51.35 51.93 

China 12 Month Average NN 0.395 0.312 26.82 30.02 

South Africa 12 Month Average NN 0.429 0.364 64.72 67.22 

 

Table 8B: Neural Network Consensus Model – Forecast Bias  

Country  Horizon Method 
Over 

Estimate (%)  

Wilcox Statistic: 

Forecast 

India 1 Month Average NN 56.67 201 

 3 Month Average NN 50.00 213 

 6 Month Average NN 36.67 184 

 9 Month Average NN 56.67 134* 

 12 Month Average NN 53.33 220 

China 12 Month Average NN 53.33 195 

South Africa 12 Month Average NN 66.67 149 

Level of significance: * 5% , **1% , ***0.1%  
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Graphs 

Figure 1: Fully Connected Feed Forward Neural Network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend 

= input node (holds true for all subsequent figures) 

= hidden/computational node (holds true for all subsequent figures) 

T  is the total number of nodes in the input layer. H is the total number of hidden nodes in the 1st hidden layer (Layer 2) and 𝐻2 

is the total number of hidden nodes in hidden layer two (Layer 3). 𝑧1
𝑜 is the weighted sum for the output layer and �̂�𝑛𝑛 i.e. the 

predicted value of 𝑦𝑖 the activation of the output layer. 
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Legend 
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Figure 2: Convolutional Neural Network 
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Figure 3: Long Short Term Memory Network 
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Figure 4: Rolling Window Training and Testing Split 
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For N windows, there are a total of N training, testing and out-of-sample (i.e. validation and testing) data sets. The last observation 

of every window (i.e. the test set) is the final prediction in each window such that the N final predictions are temporally sequential 

and non-overlapping. 
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Figure 5A 

 

Figure 5B 

 

Figure 5C 
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Figure 5D 

 

 

Figure 5E 
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Figure 6 

 

Figure 7 
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Appendix A 

Table 1: Variable Description - India 

Category Variable Name 

WPI and Sub Components 

Wholesale Price Index (WPI) 

WPI Primary Articles 

WPIPA  

WPIPA Non Food  

WPI Manufacturing  

WPIMfg Food  

CPI and Sub Components 

Consumer Price Index (CPI) 

CPI Agricultural Labour    

CPIAL Food 

CPIAL Fuel and Light 

CPIAL Clothing 

CPIAL Miscellaneous  

Oil Related Indicators 

West Texas Intermediate (USD) 

Crude Petroleum Production 

Petrol Price 

Diesel Price 

Food Related Indicators 

Food Grain Stock 

Wheat Stock 

Rice Stock 

Rainfall 

Auto Industry Related Indicators 

Monthly vehicle sales   

Total vehicle sales   

Total Automobile Production 

Automobile Production (Passenger Vehicle) 

Automobile Production (Commercial Vehicle) 

Automobile Production (Commercial Vehicle -2 Wheeler) 

Automobile Production (Commercial Vehicle -3 Wheeler) 

Total Automobile Sales 

Automobile Sales (Passenger Vehicles) 

Automobile Sales ( Commercial Vehicle) 

Automobile Sales (2 Wheeler) 

Automobile Sales (3 Wheeler) 

Electricity Related Indicators  Electricity Generation  

Monetary Policy and Finance Related 

Indicators 

Repo Rate 

Reverse Repo Rate 

Cash Reserve Ratio 

Statuary Liquidity Ratio  

Bank Rate 

M1 Money Supply 
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M2 Money Supply 

Commercial Bank Deposits 

Total Liabilities RBI  

Reserve Money 

Trade Related Indicators 

India USD Forex 

Net Foreign Institutional Investment (FII)/ Foreign Portfolio Investment 

(FPI) 

Net Foreign Institutional Investment (FII)/ Foreign Portfolio Investment 

(FPI) in Equity 

Net Foreign Institutional Investment (FII)/ Foreign Portfolio Investment 

(FPI) in Debt 

Trade Balance 

Miscellaneous Cement Production 
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Table 2: Variable Description – China 

Category Variable Name 

Monetary Policy and 

Finance Related 

Indicators 

M0 for China  

M2 for China 

Total Reserves excluding Gold for China 

Total Reserves excluding Gold for Province of China Taiwan 

Share Prices: All shares/broad: Total: Total for China 

Total Share Prices for All Shares for China 

CPI and Sub Components Consumer Price Index: All Items for China 

 Consumer Opinion Surveys: Confidence Indicators: Composite Indicators 

 Consumer opinion surveys: Economic Situation: Future tendency 

 Net Trade: Value Goods for China 

Trade Related Indicators Ratio of Exports to Imports for China 

 Broad Effective Exchange Rate for China 

 Exports: Value Goods for China 

 Imports: Value Goods for China 

 International Trade: Exports: Value (goods): Total for China 

 International Trade: Imports: Value (goods): Total for China 

 U.S. Exports of Goods by F.A.S. Basis to China Mainland 

 U.S. Imports of Goods by Customs Basis from China 

 National Currency to US Dollar Exchange Rate: Average of Daily Rates 

 National Currency to US Dollar Spot Exchange Rate for China 

 Real Broad Effective Exchange Rate for China 

 Real Effective Exchange Rates Based on Manufacturing Consumer Price 

 China / U.S. Foreign Exchange Rate 

 Leading Indicators OECD: Leading indicators: CLI: Amplitude adjusted 

OECD Composite 

Leading Indicators 

Leading Indicators OECD: Leading indicators: CLI: Normalised  

Leading Indicators OECD: Leading indicators: CLI: Trend restored  

Leading Indicators OECD: Reference series: Gross Domestic Product 

 Economic Policy Uncertainty Index: Mainland Papers for China 

Production Related 

Indicators 

Producer Prices Index: Economic activities: Industrial activities: 

Production: Construction: Total construction: Total for China 

Sales: Retail trade: Total retail trade: Value for China 

Business Tendency Surveys for Manufacturing: Confidence Indicators 
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Table 3: Variable Description – South Africa 

Category Variable Name 

CPI and Sub Components 

Consumer Price Index: All Items for South Africa 

Consumer Opinion Surveys: Confidence Indicators: Composite Indicators: 

Consumer Price Index: All Items Excluding Food and Energy for South 

Consumer Price Index: Energy for South Africa 

Consumer Price Index: Food and non-Alcoholic beverages (COICOP 01): 

 Consumer Price Index: Housing water electricity gas and other fuels 

Trade Related Variables  

Broad Effective Exchange Rate for South Africa 

National Currency to US Dollar Exchange Rate: Average of Daily Rates 

National Currency to US Dollar Spot Exchange Rate for South Africa 

Real Broad Effective Exchange Rate for South Africa 

Real Effective Exchange Rates Based on Manufacturing Consumer Price 

South Africa / U.S. Foreign Exchange Rate 

Total Retail Trade in South Africa 

U.S. Exports of Goods by F.A.S. Basis to South Africa 

U.S. Imports of Goods by Customs Basis from South Africa 

Ratio of Exports to Imports for South Africa 

Exports: Value Goods for South Africa 

 Imports: Value Goods for South Africa 

Monetary Policy and 

Finance Related Indicators 

3-Month or 90-day Rates and Yields: Interbank Rates for South Africa 

3-Month or 90-day Rates and Yields: Treasury Securities for South 

Immediate Rates: Less than 24 Hours: Call Money/Interbank Rate for 

Immediate Rates: Less than 24 Hours: Central Bank Rates for South 

Interest Rates Government Securities Government Bonds for South 

Interest Rates Government Securities Treasury Bills for South Africa 

Long-Term Government Bond Yields: 10-year: Main (Including Benchmark) 

Long-Term Government Bond Yields: Combined Terms for South Africa 

M3 for South Africa 

Monetary aggregates and their components: Broad money and components: 

Share Prices: All shares/broad: Total: Total for South Africa 

Total Share Prices for All Shares for South Africa 

 Total Reserves excluding Gold for South Africa 

Production Related 

Indicators 

Domestic Producer Prices Index: Manufacturing for South Africa 

Orders: Construction: Permits issued: Dwellings / Residential 

Producer Prices Index: Economic Activities: Domestic Manufacturing for 

Producer Prices Index: Economic Activities: Domestic Mining and 

Producer Prices Index: Economic activities: Industrial activities: 

Producer Prices Index: Economic activities: Manufacturing: Domestic 

Producer Prices Index: Economic activities: Mining and quarrying 

Production in Total Manufacturing for South Africa 

Production of Total Construction in South Africa 
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Production: Construction: Total construction: Total for South Africa 

Production: Energy: Electricity: Total for South Africa 

Production: Manufacturing: Total manufacturing: Total manufacturing 

Production: Mining: Total mining: Total for South Africa 

Business Tendency Surveys for Manufacturing: Confidence Indicators 

Sales: Manufacturing: Total manufacturing: Value for South Africa 

Sales: Retail trade: Car registration: Passenger cars for South Africa 

Sales: Retail trade: Total retail trade: Value for South Africa 

Sales: Retail trade: Total retail trade: Volume for South Africa 

Sales: Wholesale trade: Total wholesale trade: Value for South Africa 

Sales: Wholesale trade: Total wholesale trade: Volume for South Africa 

Automobile and Housing 

Related Indicators 

Passenger Car Registrations in South Africa 

Permits Issued for Dwelling in South Africa 

OECD Composite Leading 

Indicators 

Leading Indicators OECD: Component series: BTS - Business situation 

Leading Indicators OECD: Component series: BTS - Demand or orders 

Leading Indicators OECD: Component series: Car registration - sales 

Leading Indicators OECD: Component series: Construction: Original 

Leading Indicators OECD: Component series: Interest rate spread 

Leading Indicators OECD: Component series: Share prices: Original 

Leading Indicators OECD: Leading indicators: CLI: Amplitude adjusted 

Leading Indicators OECD: Leading indicators: CLI: Normalized 

 

 


