
1

Inflation Forecasting in Emerging Markets: A Machine Learning Approach

Kriti Mahajan & Anand Srinivasan*

Abstract

In developing and emerging economies, the accuracy of macroeconomic forecasts is often

constrained by the limited availability of data both in time series and in cross-section. Given

this constraint, this paper uses a suite of machine learning methods to explore if they can offer

any improvements in forecast accuracy for headline CPI inflation (y-o-y) in 3 emerging market

economies: India, China and South Africa. For each forecast horizon for each country, we use

a host of machine learning models and compare the accuracy of each method to 2 benchmark

models (namely, a moving average forecast and SARIMA). For India, we find that the deep

neural networks out-perform the benchmark forecast for all horizons except the 1 month ahead

forecast. The reduction in forecasting error ranges from 44% to 63%. For South Africa, the

neural network model provides a reduction in forecasting error between 42% and 57% for the

1 year forecast. For China, the reduction in forecasting error is much more modest ranging

from 5% to 33%. An average forecast using different neural net methods performs much better

than any individual forecast.

JEL codes: C45, C52, C53, C54, E00

*Ms. Kriti Mahajan is a Research Associate at CAFRAL & Dr. Anand Srinivasan is Additional Director of

Research at CAFRAL & Associate Professor of Finance at NUS Business School, National University of

Singapore. The views expressed in this article are those of the authors, and do not necessarily reflect the views or

position of CAFRAL or National University of Singapore. The authors can be contacted at:

kriti.mahajan@cafral.org.in and bizas@nus.edu.sg or anand.srinivasan@cafral.org.in.

mailto:kriti.mahajan@cafral.org.in
mailto:bizas@nus.edu.sg
mailto:anand.srinivasan@cafral.org.in

2

1. Introduction

One of the most important goals of central banking is to maintain a stable inflation rate.

In an analysis of central bank objectives for 47 developed and developing economies, BIS finds

that price stability is the most important objective for every single one of these economies1.

This suggests that developing a better inflation forecast is probably the most central issue in

central banking research.

Over the last few decades, most traditional inflation forecasting methods assume that

there exists an underlying stochastic data generating process which can be determined by a pre-

specified model. However, such pre-specified models suffer from two key short comings.

Firstly, a pre-specified model “can only be as good as its specification, regardless of what the

data might suggest” (Jung, Patnam and Ter-Martirosyan, 2018). Secondly, if the underlying

data generating process changes, the prevailing pre-specified model is invalidated. For

instance, Stock and Watson (2007) estimate an integrated moving average (time varying trend

cycle) model for inflation in the USA and find that the coefficients for this model changed in

the beginning of the 1970s and then again in the mid-1980s, leading them to conclude that “…if

the inflation process has changed in the past, it could change again”.

Additionally, the extant forecasting approaches “bring a variety of undesirable

properties, ranging from high sensitivity to model specification to high data requirements”

(Smalter Hall and Cook, 2017). This is particularly relevant for forecasting inflation (and other

macroeconomic variables) because it is not a high frequency variable, being available only at

the monthly, quarterly or annual level. This problem is compounded for emerging and

developing economies where “data availability is even poorer and sometimes close to not

existent” (Jung, Patnam and Ter-Martirosyan, 2018).

An alternative approach (Breiman, 2001) advocates for models which do not make any

assumptions regarding a) the underlying data generating process and thus are invariant to

changes in the same and b) do not make any assumptions regarding the underlying relationship

between the independent variables and thus are not sensitive to model mis-specifications.

Models belonging to the second school of thought focus on finding a function that best

represents the relationship between the dependent and independent variables. Machine learning

methods fall in this category of statistical modelling. Most machine learning models estimate

non-linear relationships, which helps overcome a key disadvantage of linear models, primarily

that linear models “fail to identify many macroeconomic phenomenon namely asymmetric

business cycles, volatility of stock exchange, inherent regime switching and many others”

(Tong, 1990).

Thus, machine learning models provide an opportunity to improve accuracy in a limited

data environment and as such are extremely relevant for developing and emerging markets. As

a first step towards evaluating the usefulness of machine learning methods for developing

markets, this paper forecasts the headline CPI inflation (y-o-y) for 3 emerging market

economies: India, China and South Africa. For India, we forecast the 1 month ahead to 12

month while for China and South Africa we forecast the 12 month ahead forecast. We use three

1 Issues in Central Banking, Chapter 2, BIS Publications

3

different classes of supervised machine learning methods, namely: penalized linear regression

methods (Elastic Net regression), tree based methods (random forests and XG-Boost) and

neural networks (CNN, CNN-LSTM and Encoder Decoder).

 For each forecast horizon for each country, we use a host of machine learning models

and compare the accuracy of each method to 2 benchmark models (namely, a moving average

forecast and SARIMA). We find that the machine learning models – in particular the deep

neural networks – out-perform the best benchmark forecast for all horizons except the 1 month

ahead forecast. For the 3-month forecast of India’s inflation, neural network methods provide

between 39% to 55% reduction in forecasting error when compared to the benchmark model,

where forecast error is measured as the mean absolute deviation of the forecast from the

realized inflation. For a 1 year forecast if Indian inflation, neural network models provide a

27% to 44% reduction in forecast error.

The superior performance of the most non-linear methods suggests that there exists a

non-linear relationship between CPI (y-o-y) and its determinants in the three emerging market

economies (baring the 1 month ahead forecast). Notably, deep neural networks are able to

forecast both the peaks and troughs in CPI inflation despite having been trained on small

samples. Thus, there are gains to be made from adopting machine learning methods to inform

policy decisions in India specifically and all emerging market economies generally.

We find that a combination of the three neural net methods provide an improvement of

each method individually for all 3 countries. At the one year horizon, the average neural net

forecast results in a reduction in forecasting error (measured by the Mean Absolute Deviation)

of 51% for India, 30% for China and 67% for South Africa.

While neural network methods provide limited scope for determining causal

relationships, they do provide some avenues for determining which independent variables

contribute most significantly to the forecast accuracy for each model. For each machine

learning model, we determine which independent variables contribute most significantly to the

accuracy of the forecast (variable importance). For CPI inflation in India, we find CPI and its

sub-components, food, oil and bank related variables improve the forecast accuracy most

significantly, which reinforces the findings of the literature examining the determinants of CPI

inflation in India.

The rest of the paper is organized as follows: Section 2 presents the literature review.

Section 3 describes the benchmark models and the machine learning methods. Section 4

explains the methods used for interpreting each machine learning method. Section 6 describes

the sample and variable construction. Section 7 presents the results of the forecasting exercise

while Section 8 presents the interpretation of the forecasts. Section 9 concludes.

2. Literature Review

 The literature on the use of machine learning methods for the forecasting of

macroeconomic variables is limited but is expanding rapidly. Jung, Patnam and Ter-

Martirosyan (2018) use elastic net, SuperLearner and Recurrent Neural Networks to forecast

4

the macroeconomic data of 7 advanced and emerging economies and find that the machine

learning methods outperform the benchmark WEO forecasts. Smalter Hall and Cook (2017)

forecast civilian unemployment in the US using 4 different deep neural networks, each of which

outperforms the benchmark directed autoregressive model over short horizons. Biau and D’Elia

(2010) find that Random Forests combined with a linear model out-performs an AR model for

forecasting the GDP growth in the euro area. Tkacz and Hu (1999) forecast GDP growth using

artificial Neural Networks (ANN) which are 15% to 19% accurate than the linear benchmark

models considered.

In contrast, Chuku, Oduor, and Simpasa (2017) use artificial neural networks to forecast

macroeconomic variables in African countries and find that they only marginally outperform

ARIMA and traditional structural econometric models.

The literature on the use of machine learning methods for forecasting inflation is even

sparser. Medeiros, Vasconcelos, Veiga, and Zilberman (2018) forecast in inflation over multiple

horizons in the 1990s and 2000s for the US and find that machine learning models (random

forests in particular) dominate the benchmark models. Chakraborty and Joseph (2017) present

three case studies illustrating the potential utility of machine learning at central banks, of which

one is forecasting CPI inflation (UK) on a medium term horizon (two years). They find that

the machine learning model beat the benchmark AR and VAR models by at least 29%. McNelis

and McAdam (2005) estimate linear and neural network-based models “for forecasting

inflation based on Phillips–curve formulations in the USA, Japan and the euro area”. They find

that the neural network based models outperform the linear models for forecasting the euro

area service price indices but have variable performance across consumer and producer indices.

Nakarumra (2005) finds that on average neural networks dominate univariate AR models on

for one and two quarter ahead inflation forecasts for the US.

In India, the literature on the use of machine learning methods - in particular, for

inflation forecasting using multivariate data - does not exist. A recent paper by Pratap and

Sengupta (2019) estimate CPI inflation using a suit of machine learning models using

univariate data but find that none of the models can out-perform an SARIMA model. A paper

by Sanyal and Roy (2014) compares linear, non-linear and consensus forecasting for IIP and

GDP in India. Sanyal and Roy (2014) find that combination forecasts dominate linear and non-

linear methods for forecasting both IIP and GDP in the short horizon (1-6months). For long

term forecasts (7-12months), non-linear methods are best for IIP while consensus forecasts are

best for GDP. However, the paper observed improvement in forecast accuracy by using

“combination forecast for series with long memory property/ less volatile series.”

Our paper is the very first to examine neural network prediction to examine inflation prediction

in three of the BRICS countries – India, China and South Africa. Our use of multiple countries

mitigates concerns that this method is not generalizable across several countries.

3. Model Description

 This section describes each machine learning method used CPI headline inflation for

three emerging market economies: India, South Africa and China along with the benchmark

5

models (those that we compare the given machine learning method with in terms of prediction

error). We choose a multivariate approach for forecasting because we assume that “the

inclusion of additional information as model inputs will improve model considerably” (Cook

and Hall, 2017). In the remainder of the paper the notation we is throughout the paper is as

follows: yi is ith observation of the dependent variable 𝑦 (for 𝑖 = 1 ,2, . . , 𝑁), ŷi,a is the predicted

value of yi, Xi,p is the ith observation of independent variable

3.1 Benchmark Models

We consider two benchmark models: moving average and seasonal ARIMA. For each

forecast horizon h, the moving average forecast (given my MA(h)) is computed as follows

 �̂�𝑡+ℎ =
1

𝐻
∑ �̂�𝑡−ℎ

𝐻
ℎ=1 (1)

i.e. the predicted value of 𝑦𝑖 at time t+h is the average value 𝑦𝑖 over the preceding relevant

forecast horizon.

The seasonal ARIMA (SARIMA) is an extension of ARIMA that is capable of

modelling the seasonal components in a univariate time series in addition to the autoregressive,

moving average and trend components typically modelled by ARIMA. SARIMA is given by

the following notation

 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑚 (2)

where (𝑝, 𝑑, 𝑞) are the traditional ARIMA parameters namely, p is the trend autoregressive

order, d is the trend difference order and q is the trend moving average order. (𝑃, 𝐷, 𝑄) 𝑚 are

the additional seasonal parameters : P is the number of seasonal autoregressive terms, D is the

number of seasonal difference terms, Q is the number of seasonal moving average terms and

m is the number of time steps for a seasonal period. (p,d,q) are determined using

Autocorrelation Function (ACF) , Partial Autocorrelation Functions (PACF) and tests for

stationary. m is traditionally set to 12 for monthly data and suggests a yearly seasonal cycle.

The accuracy of each model is gauged using the Mean Squared Error (MSE). We

choose the MSE as the metric to be minimized by each model because as compared to the mean

absolute error (MAE), the MSE penalizes large deviations more. However, after having fit each

model to achieve the lowest MSE possible using grid search to find the best hyper parameters,

for ease in interpretation, to compare the forecasting accuracy across models in the testing

sample, we report the Root Mean Squared Error (RMSE). We also report the mean absolute

error (MAE) for each model. We report two accuracy improvement metrics – one for RMSE

and one for MAE. The percentage accuracy increase is as compared to the best performing

benchmark model i.e. for performance metric i ,

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑖 = (
𝑏𝑒𝑠𝑡 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝑏𝑦 𝑚𝑒𝑡𝑟𝑖𝑐𝑖−𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑙 𝑚𝑒𝑡𝑟𝑖𝑐𝑖

𝑏𝑒𝑠𝑡 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝑏𝑦 𝑚𝑒𝑡𝑟𝑖𝑐𝑖
) . 100

We also report the over-estimate percentage which is the number of times the forecast exceeds

the actual as a proportion of the total testing observations.

6

3.2 A Brief Introduction to Machine Learning Methods

Next, we describe the machine learning methods that we use, focusing on the tuning

parameters used in our estimation. While in traditional econometric model, we choose the

independent variables 𝑋𝑝 and the estimation strategy to obtain the parameter (�̂�) for a pre-

specified function, in machine learning models we find the optimal hyperparameters to arrive

at the optimal parameters for a function forecasting �̂�𝑖,𝑎. We provide some level of details here

drawn from Tibshirani and Friedman (2017), Hastie, James , Tibshirani and Witten (n.d.) and

Goodfellow , Bengio and Courville (2016), as the typical readers in economics or finance may

be less familiar with some of these methods.

To understand the theoretical underpinnings of the machine learning methods used, we

refer to Hastie, Tibshirani and Friedman (2017), Hastie, James , Tibshirani and Witten (n.d.),

Varian (2012), Goodfellow , Bengio and Courville (2016) , Mullainathan and Spiess (2017)

and Athey and Imbens (2019). In the machine learning literature, input arguments which define

the structure (architecture) of the model are known as hyperparameters. The parameters learnt

from a model so structured are known as model parameters. Model parameters define the

function used for forecasting 𝑦𝑖. Illustratively, in traditional econometrics, we can think of the

chosen independent variables as the hyperparameters and the �̂� as the parameter. For each class

of machine learning models, there is a different set of hyper parameters. Different values of a

hyperparameter result in different model architectures which ultimately results in different

predictions of varying accuracy. The process of searching for the hyperprameters that result in

‘ideal’ model architecture i.e. the model architecture that results in the highest predictive

accuracy is known as hyperparameter tuning.

Hyperparameter tuning can be done a) based on previous literature i.e. hyperparameter

values and/or rules of thumb discovered in past applications of the relevant machine learning

model to the subject at hand ; b) manually : changing the hyperparameters until a satisfactorily

high accuracy is reached; c) automatic search (Grid Search and Random Search): Grid Search

is the process of specifing a set of values for each hyperparameter. The total number of model

architectures is the Cartesian product of each set of each hyperparameter. Random Search is

Grid Search combined with subsampling. In random search, instead of specifying a set of

values, we specify a distribution for each hyper-parameter. The joint distribution of the

hyperparameters gives all the possible model architectures under the given distributional

assumptions. R random samples i.e model architectures are chosen from the joint distribution.

For both Grid Search and Random Search, the ideal model architecture is the architecture

resulting in the highest predictive accuracy.

Thus, the objective is to find hyperparameters which work no matter what the

underlying data. Finding such a generalizable set of hyper parameters requires careful

specification of the training sample and out-of-sample testing period. To measure the predictive

accuracy of a model, it is important that the forecast accuracy be measured out-of sample as

the training accuracy can be made arbitrarily high through overfitting. However, if we use the

entire out-of-sample data for testing, we may overfit to the out-of-sample data (a phenomenon

known as ‘data leakage’), resulting poor true generalizability. To protect against ‘data leakage’,

we split the out-of-sample data into two parts: validation data and testing data. The validation

7

set allows the evaluation of the model on unseen data to select the best model architecture,

while still holding out a subset of data for final evaluation after finding the best model.

The training, validation and testing data can be organized in many ways, namely, a)

cross validation (bootstrap sampling for cross sectional methods), b) fixed window (training,

validation and testing periods demarcated by dates), c) rolling window (shifting a window of

fixed size ahead by one observation successively) and expanding window2 (increasing the

window size by 1 successively).

Each machine learning model needs a stopping/penalization/regularization criterion to

reduce complexity and over fitting and they differ across machine learning classes.

In the following sections, we move from simple linear models to increasingly complex

models. We start with penalized linear regression methods (Elastic Net regression), tree based

methods (random forests and XG-Boost) and deep neural networks (CNN, CNN-LSTM and

Encoder Decoder).

3.3 Penalized Regression/ Shrinkage Methods

The 𝛽𝑜𝑙𝑠 estimates are BLUE (i.e. Best Linear Unbiased Estimates) i.e. they have zero

bias but may have high variance. The variance of 𝛽𝑜𝑙𝑠 increases when a) P is almost as large

as, equal to or greater than N and b) there is multicollinearity. In fact, when N<P (also known

as "fat data"), OLS estimates don’t have a unique solution. In the presence of high variance,

𝛽𝑜𝑙𝑠 become unstable3 and have a tendency to over-fit on the training data resulting in poor out

of sample predictions.

To reduce the variance of 𝛽𝑜𝑙𝑠 estimates –albeit at the cost of having a positive bias -

and thereby improve the accuracy of the out of sample predictions, the machine learning

literature proposes many penalized regression/shrinkage methods. Each shrinkage method is a

linear function which aims to reduce the variance of the 𝛽 estimates. Penalized Linear

Regression Methods/ Shrinkage Methods are named so because they shrink the 𝛽 estimates

towards 0 by adding a penalty - known as the regularization term - to the regression sum of

squares (RSSols) equation. The regularization term penalizes model complexity to avoid over

fitting on the training data.

Depending on the type of type of penalty used, there are different kinds of shrinkage

methods. Here we consider one shrinkage method, Elastic Net regression, which with suitable

hyper parameters, encompasses a broader class of shrinkage models. We use this method

because the regularization term for Elastic Net (originally proposed by Zou and Hastie (2005))

is a weighted , convex combination of two different types of penalties– the ridge penalty and

least absolute shrinkage selector operator (LASSO) penalty - as follows:

2 Popularly known as ‘online learning’ in machine learning literature
3 ‘A small change in the training data can cause a large change in the least squares coefficient estimates.’(Hastie, Friedman,

and Tibshirani, 2017).

8

𝛽𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡
̂ = argmin

𝛽
{ ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑝𝑋𝑝,𝑖

𝑝

𝑝=1

)

𝑁

𝑖=1

2

+ 𝜆 ∑(𝛼|𝛽𝑝| + (1 − 𝛼)𝛽𝑝
2)

𝑃

𝑝=1

}

(3)

Minimization of the above objective function implies minimizing: a) the RSSols (which

results in coefficients which fit the data well) and b) the shrinkage penalty (which amounts to

shrinking 𝛽𝑝 towards 0). Within the shrinkage penalty, the use of the LASSO penalty allows

elastic net to perform variable selection by setting irrelevant 𝛽𝑝 to 0 and while the ridge penalty

shrinks the coefficients of (highly) correlated independent variables in a similar fashion,

resulting in stable coefficients . Thus, by combining the LASSO and ridge regression penalty

terms, elastic net gives stable coefficients even in the presence of ‘fat data’ and high

multicolinearity while also performing variable selection. Furthermore, Smeekes and Wijler

(2018) also find that “penalized regression methods are more robust to misspecification than”

a “ dynamic factor approach”.

There are two hyperparamters in the elastic net method as in equation (3) above. The

parameter 𝜆 is the shrinkage penalty: the smaller the value of 𝜆 (i.e. the closer 𝜆 is to 0) the

closer 𝛽𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡
̂ is to 𝛽𝑜𝑙�̂�, while the greater the value of 𝜆, the more 𝛽𝑝 is shrunk towards 0

reducing their variance. The domain of 𝜆 ranges from 0 to ∞.

The parameter 𝛼 controls which penalty has more weight, whose domain ranges from

0 to 1. When 𝛼 = 1, (3) reduces to LASSO regression while 𝛼 = 0 reduces (3) to ridge

regression. If grid search finds 1 to be the optimal value of 𝛼, it suggests that the dependent

variable is given by a sparse function (and vise versa for 𝛼 = 0).

3.4 Tree based Models

While penalized regression methods are capable of discerning linear relationships in

the data, they cannot find a) interactions among the independent variables and b) non-linear

relationships, unless the same are explicitly modelled. Modelling all pairwise interactions

and/or non-linearites explicitly to solve this issue is “infeasible as it produces more regressors

than data points” (Mullainathan and Spiess, 2017). Non-linear methods in machine learning

remedy this short coming of linear methods. First, we consider tree based methods (random

forests and XG-Boosted trees) followed by deep neural networks (Convolutional Neural

Networks (CNNs), Long Short Term Memory (LSTM) networks and a combination of CNN

and LSTM neural networks (CNN-LSTM)).

Elastic net penalty

LASSO

penalty

Ridge

penalty

𝑅𝑆𝑆𝑜𝑙𝑠

9

The building block of all tree based machine learning methods is a decision tree.

Decision trees can be of two types: classification trees and regression trees. Given that we want

to forecast a continuous variable, we focus on regression decision trees. A regression tree is a

non-parametric method which splits the entire 𝑋𝑝,𝑖 space into R rectangular and non-

overlapping sub-samples called leafs (given by 𝐿1, 𝐿2 , …, 𝐿𝑅) such the RSS is minimized

across all R leaves as follows

𝑅𝑆𝑆𝑡𝑟𝑒𝑒 = ∑ ∑(𝑦𝑖 − 𝑦𝐿�̂�
)2

𝑖∈𝐿𝑟

𝑅

𝑟=1

(4)

𝑦𝐿�̂�
 equals �̅�𝐿𝑟

 i.e. the predicted value for 𝑦𝑖 in each leaf is the average value of 𝑦𝑖 in leaf 𝐿𝑅.

Thus, the relationship between 𝑋𝑝,𝑖 and 𝑦𝑖 is “approximated by a piecewise constant model

where each leaf (terminal node) represents a distinct regime” (Medeiros, Vasconcelos, Veiga,

and Zilberman, 2018). Note that much like penalized regression methods a regression decision

tree also aims at reducing variance.4

How does a regression tree find the leaves which minimize (4)? It sequentially divides

𝑋𝑝,𝑖 into two successively smaller sub-regions based on threshold values for each split. A

threshold value is the observation i of independent variable 𝑋𝑝 that splits entire region into two

regions such that the MSE is minimized across sub-regions. To find the threshold value t, the

regression tree splits the region under consideration into two regions based on each observation

i for each independent variable 𝑋𝑝 and chooses the (i, 𝑋𝑝) pair which gives the lowest MSE.

This process of sequential, binary splitting continues till a stopping criterion is reached to

prevent over fitting. The last layer of sub-samples form the leaves 𝐿𝑅 where 𝑦𝐿�̂�
 equals �̅�𝐿𝑟

.

Among non-linear methods, the primary appeal of regression trees is that they are

highly interpretable but may suffer from omitted variable bias in the presence of

multicolinearity5. Furthermore, standalone decision trees are associated with high variance and

the estimated regression tree is often “discontinuous with substantial jumps” (Athey and

Imbens, 2019) which reduces the accuracy of the predictions made by a single decision tree

substantially and making them uncompetitive. However, when regression trees are used in

ensemble methods (like random forests and boosting), the accuracy of the predictions improves

drastically.

Ensemble learning methods forecast 𝑦𝑖 by aggregating the predictions of many weaker

models (called base learners) into a single prediction.6 Two popular ensemble learners are

bagging and boosting which when used in conjunction with decision trees result in random

4 However, Athey and Imbens (2019) caution against interpreting trees on the grounds of omitted variable bias, especially in

the presence of correlated variables as “covariates that have strong associations with the outcome may not show up in splits

because the tree splits on covariates highly correlated with those covariates.”

6 Base learners can be from the same learning algorithm (as in the case with Random Forests) or different learning

algorithms (eg: SuperNets).

10

forests and XG-Boost respectively. Each of the two has a different objective: while random

forests aim at reducing variance XG-Boost reduces bias.

Random Forests average over a large number of de-correlated trees to improve the

accuracy of its predictions vis-à-vis a single regression tree. A random forest generates multiple

decision trees simultaneously. The predictions of each tree are uncorrelated from those of the

other because: a) each tree is built on a boot-strapped sample and b) at each new split in each

tree, a new random subset of the independent variables of m predictors is chosen for

determining the threshold value. After all the trees have been built, �̂�𝑟𝑓 is obtained by averaging

the predictions of each tree. 7

Athey and Imbens (2019) state that random forests are very effective when a relatively

small number of the independent variables are related to the dependent variable. However, they

also state that random forests a) “are not efficient at capturing linear or quadratic effects”, b)

are not efficient at “exploiting smoothness of the underlying data generating process” , c) tend

to “have bias, particularly near boundaries” and d) “in small data sets will have more of a step

function shape.”

In a random forest, each tree is independent of the other because all the trees are built

simultaneously. Boosting grows the trees sequentially rather than simultaneously to allow each

subsequent tree to achieve a smaller forecast error than the preceding tree by learning from the

residuals of the preceding tree. This is achieved by fitting each subsequent tree on the residuals

of the preceding tree. Boosting updates each tree in a sequentially additive manner: The

weighted output of the current tree is added to the preceding tree to update the boosted tree.

�̂�𝑏𝑜𝑜𝑠𝑡 is the weighted average of these additive models.

Currently, the most popular boosting algorithm is Extreme Gradient Boosting (XG-

Boost). XG-Boost uses boosting in conjunction with a gradient descent algorithm to minimize

the loss function when adding a new model. This means that instead of fitting the each

subsequent tree on the residuals of the previous tree, XG-Boost fits each subsequent tree on the

gradient of the loss function of the previous tree. This to makes the boosting algorithm more

generalizable to any differentiable loss function.

3.4.1 Hyper-parameters for Tree Based Methods

Using grid search, we determine the optimal hyperparameters listed in Table 1, which

are used to determine the best parameters for building trees i.e. the best splitting variable and

its associated threshold value for each node of each tree.

Each tree based method requires a regularization criterion because a tree can over fit on

the training data by growing till each node is a 100% pure node (i.e. a node where all the

observation in the training data belongs to one regime). However, such a tree gives poor out of

sample predictions. One popular regularization criterion is tree pruning once the whole tree is

7 m<p. Usually, m = √𝑃 i.e. the number of independent variables considered at each split (m) approximately equals the

square root of the total number of independent variables.

11

built. Alternatively, determining the optimal hyper parameters in listed Table 1 also helps avoid

over fitting.

Maximum tree depth is the maximum possible number of levels a tree can have. If the

tree is too short, it will be unable to find the relevant patterns in the data. However, if it is too

deep, it will overfit. The minimum observations for node splitting, minimum observations for

leaf formation and maximum number of leaf nodes help prevent the tree from overfitting by

preventing the formation of regions that are too niche. Total number of trees defines the number

of de-correlated trees grown. In general, deeper trees reduce bias while a larger number of

trees reduces variance. The number of independent variables to consider in each node while

determining the best splitting variable also reduces variance.

XG-Boost has additional parameters to reduce the variance of the trees: Columns

Sample by Tree, Columns Sample by Level and Columns Sample by Nodes. ‘Columns Sample

by Tree’ is the percentage of independent variables to consider while building each tree, level

and node respectively in XG-Boost. Additionally, much like elastic net, XG-Boost regularizes

the leaf weights using L1 and L2 penalty to encourage scarcity and reduce complexity. The

learning rate slows down the weight updating process thereby reducing the possibility of

overfitting.

3.5 Deep Neural Network

The machine learning methods considered till now are not capable of discerning any

information from the sequential and temporal structure of time series data. If fact, tree based

methods treat data as cross sectional. This is especially an issue if the data is not stationary. The

deep neural networks considered by us - Convolutional Neural Networks (CNNs), a

combination of CNN and LSTM neural networks (CNN-LSTM) and an Encoder Decoder

network - remedy this short coming as they can discern information from the temporal and

spatial structure of time series data.

In general, neural networks are composite functions which are universal function

approximators, i.e., they can approximate any arbitrarily complex function after being specified

in the appropriate manner. A neural network is a linear/non-linear transformation of the

weighted linear combinations of the data 𝑋𝑖,𝑝. Every neural network is broadly composed of

three types of layers: the input layer, the hidden layer/s and an output layer. A neural network

with only 1 hidden layer is known as a single-layer neural network.8 A neural network with

more than 1 hidden layer is known as a deep neural network. Goodfellow, Bengio, and Courville

(2016) state that in out-of-sample testing, on average, deep neural networks generalize better

than single-layer neural networks and thus we use the former for forecasting inflation.

Each of the 3 layers is comprised of multiple nodes and is connected to the subsequent

layer through weights. The structure of a neural network “follows the structure of a GLM

model” but instead of using maximum likelihood estimation), it uses the feed forward

mechanism and back propagation (a non-parametric algorithm) to determine the weights that

8 Lippmann (1987) finds that a multi-layer perceptron (MLP) with the appropriate number of hidden nodes is sufficient for

estimating convex regions/regions of any shape thus over-coming the limitation of linearly separable regions.

12

result in the function for forecasting 𝑦𝑖 (Smalter Hall and Cook, 2017).The weights so determined,

“identify which features and parameters (i.e. computational nodes) are relevant for prediction”

(Smalter Hall and Cook, 2017). These processes are best illustrated by considering a fully

connected feed forward neural network.

A fully connected feed forward neural network is called fully connected because each

node is globally connected i.e. each node in each layer is connected to each node in each

subsequent layer. As a consequence, all the data is fed simultaneously to the hidden layers from

the preceding layer.

Fully connected neural networks rely on two processes for training: the feed forward

mechanism, followed by back propagation. The feed forward mechanism is the process through

which data goes from the input layer to the hidden layers and then to the output layer to produce

the predicted value �̂�𝑛𝑛. The input layer is connected to computational nodes in the subsequent

hidden layer where the weighted linear transformation of the data is computed. The

computational node is connected to further computational nodes where the same operations

take place. This continues till the last layer i.e. the output layer where the last transformation

of the weighted linear combination is computed. This completes one pass of the feed forward

mechanism.

After completing one forward pass of the feed forward mechanism, the loss function

𝐿(𝑦𝑖, �̂�𝑖,𝑛𝑛) (which is a penalized version of MSE) is computed to determine the accuracy of the

�̂�𝑖,𝑛𝑛 .The feed forward mechanism is repeated for E iterations/epochs (for e going from 1 to…

E), such that in each subsequent epoch (𝑒 + 1), the accuracy of �̂�𝑖,𝑛𝑛 is improved by

minimizing the loss function through back propagation.

Back Propagation is the process through which a neural network “learns” i.e. it’s the

algorithm through which a neural network determines the weights and biases required for

minimizing 𝐿(𝑦𝑖, �̂�𝑖,𝑛𝑛). These optimal weights and biases for minimizing 𝐿(𝑦𝑖, �̂�𝑖,𝑛𝑛) are

determined from the gradient of the loss function. To determine the gradient of the loss function

a popular method is stochastic gradient descent (SGD)9. The method is stochastic because it

partitions the entire training sample into 𝑏 random sub-samples randomly. The use of random

sub-samples increases the chances of finding the global (vis-a-vis the local minima) of the loss

function in each epoch 𝑒. The weights and biases are updated for E epochs or till a stopping

criterion is reached whichever comes first.

As stated previously, the input layer being a column vector means that the data is

revealed to each hidden node simultaneously. As a result the data is treated as being cross

sectional because the spatial and sequential nature of the data is not exploited. Thus, we don’t

estimate inflation using a fully connected feed forward neural network because it is dominated

by more complex deep neural networks that can infer information from time series data.

9 An alternative to SGD is an extension of SGD called Adaptive Moment (ADAM) optimization.

13

3.5.1 Convolutional Neural Networks (CNN)

The temporal structure of time series data means that values closer in time to each other have

more in common than values separated by larger periods of time. Illustratively, time series data

exhibits autocorrelation. Convolutional neural networks (CNNs) can extract information from

the temporal structure of the data by a) preserving the spatial/ temporal structure of the data and

b) using filters which look for patterns in spatially adjacent data. For instance, one filter could

finding peaks, another could find troughs while another could find a linear trend. They achieve

this by using convolutional layer which are not fully connected layers.

A CNN consists of the following layers in the following order: one or more

convolutional layer/s, subsampling layer/s, optionally followed by fully connected feed forward

neural network/s and finally the output layer (see Figure 2).10 The first layer in a CNN is always

a convolutional layer which is comprised of the input layer, filters and feature maps. The input

layer preserves the temporal structure of the data by accepting data in a 3 dimensional format -

𝑤𝑖𝑑𝑡ℎ1x ℎ𝑒𝑖𝑔ℎ𝑡1x 𝑑𝑒𝑝𝑡ℎ1. 𝑊𝑖𝑑𝑡ℎ1 is the number of the independent variables (𝑋𝑝), ℎ𝑒𝑖𝑔ℎ𝑡1

is the number of observations we assume to be related across time and 𝑑𝑒𝑝𝑡ℎ1 equals 1 in a 1D

– CNN. Instructively, refer to the input layer in Figure 2. Each column of nodes in the input

layer represents a single independent variable. For P independent variables, there will be P

columns of in the input layer. The height of each column (𝑇) is the number of time units for

which we think the data is related. If we think that every 6 monthly set of data is related, T

equals 6.

The input nodes are not fully connected to the computational nodes. This is local

connectivity is achieved through the process of convolution11. For a neural network, convolution

is the matrix dot product of the input layer and the filter/s computed in the locally connected

computational nodes12. The input layer is associated with one or more filters 𝒘𝑓 (for 𝑓 =

1, 2, … , 𝐹) . 𝒘𝑓 is a matrix of weights with dimensions 𝑛 x 𝑛 x 𝑑𝑒𝑝𝑡ℎ1 which looks for patterns

in spatially adjacent subsets of data (𝑥𝑐 for c = 1,2, … 𝐶) 13. This is achieved by the filter 𝒘𝑓

convolving over the input layer. That is the filter connects each subset 𝑥𝑐 to one computational

node in the hidden layer where the dot product is computed and then transformed. This process

is repeated sequentially for every subset 𝑥𝑐. This process achieves local connectivity. A hidden

layer constructed with such locally connected nodes is called a feature map, an activation map

or a convolved feature. Each additional filter (𝑤𝑓+1, 𝑤𝑓+2…..) gives a new convolved feature.

As illustrated in Figure 2, the convolution layer is often followed by a subsampling

layer 𝑃𝑓 of size 𝑚x𝑙 to further condense and amplify the feature maps14. The sub-sampling

layers may be followed by a fully connected layer which is followed by an output layer

10 In cross sectional methods, it does not matter how the data is sorted but for CNN, LSTMs and Encoder Decoders it does.

11 In mathematical terms, a convolution is an integral which measures the degree of overlap between two functions as one function passes over

the other.
12 This is equivalent to the weighted linear combination in the feed forward fully connected network
13 n< 𝑤𝑖𝑑𝑡ℎ1 and n< ℎ𝑒𝑖𝑔ℎ𝑡1
14 The total number of subsampling layers equals the total number convolved features which in turn equals the total number of filters.

14

following which back propagation takes place as described in (albeit with some modifications)

till a stopping criterion is met to produce �̂�𝑖,𝑐𝑛𝑛.

3.5.2 CNN -LSTM Neural Network

In the feed forward networks considered hitherto (i.e. fully connected neural networks

and CNNs) the information has a unidirectional flow: it goes from the input layer to the hidden

layers to the output layer. A short coming of unidirectional networks is that they cannot store

the history of a variable/s because they lack memory. Consequently, they are unable to extract

any information from the sequential nature of time series data. Recurrent neural networks

(RNNs) remedy this shortcoming.

Like CNNs, the RNNs draw information from the temporal structure of the input data.

However, unlike CNNs, they also draw information from the sequential nature of the data 𝑋𝑝,𝑖

because they have memory. This memory is used to inform the predictions made by the RNN.

There are many RNN specifications to choose from and we chose the Long Short Term Memory

(LSTM) RNN over a vanilla RNN as the former can learn from long sequences while the former

may not.15 Thus, we consider a hybrid model which is a combination of a CNN and LSTM

neural network. The combined method offers improvements over each individual method as it

extracts information from both the spatial and sequential nature of time series data.

The structure of a CNN+LSTM neural networks is as follows: the first layer is a

convolutional layer/s, followed by an LSTM layer/s, followed by fully connected layer/s which

(as always) gives �̂�𝑖,𝑐𝑛𝑛+𝑙𝑠𝑡𝑚 as a non-linear transformation of a weighted sum, followed by

back propagation to optimize the model weights. The structure of the CNN network is as

described in the previous section. Here we focus on the architecture of the LSTM network.

Consider Figure 3. As the name suggests, LSTM networks have both long term and

short term memory. Intuitively, one can think of LSTM nodes as more complex computational

nodes in the hidden layer in a neural network. In part, the complexity arises from the differing

manner in which data is revealed to the computational nodes. In a fully connected neural

network, all the data is seen by the computational node at once because the data is stored

without structure. However, data is reveled to an LSTM node in a sequential manner allowing

it to learn from a sequence of values in an iterated and incremental fashion. This iterated and

incremental learning is due to the looped/rolled structure of an LSTM node.

Each input node in an LSTM network as a vector 𝒙𝒑 which is composed T observations

from independent variable 𝑋𝑝. T is the length of the sequence (i.e. past data) we want the LSTM

network to remember and learn from (this T is similar to the T used in CNNs). Each observation

t in 𝒙𝒑 is revealed to each LSTM node sequentially which allows the LSTM node to compute

both the long term memory and the working memory. Based on the updated long term memory,

the LSTM cell updates the working memory. The updated working memory at the last element

15 For more on this topic see the vanishing gradient problem for RNNs.

15

of the sequence is the output of an LSTM node. The LSTM layer is may be followed by a fully

connected layer, which is then followed by the output layer.

3.5.3 Encoder Decoder

We consider an encoder decoder model belonging to a broader class of models called

sequence to sequence (Seq2seq) models which translate sequences from one domain (such as

a sentence in French) to a sequences in another domain (such the same sentence translated to

Hindi).

An encoder decoder is composed of two sub-models: one is the encoder that reads input

sequences and converts it to an internal representation which is the neural networks

understanding of the data. The decoder is an output mode which takes the encoded

representation (i.e. the understanding of the network) and its own predictions to previous

portions of the encoded sequences to predict the output. That is “the decoder allows for the

model to make predictions that fit with the context established in its earlier predictions”

(Smalter Hall and Cook, 2017).

In time series forecasting, using an Encoder Decoder model amounts to translating the

past into the future. The available history of the concerned time series is encoded, allowing the

encoding of patterns like seasonality and trend, conditional on which predictions are made. In

the Encoder Decoder model used by us, the encoder is a CNN which has proven very effective

in learning the features of our data while the decoder is an LSTM model. Both the CNN and

LSTM work as described in the preceding two sections.

3.5.4 Hyper-parameters for DNNs

 Using grid search we determine the hyper-parameters in Table 2 to determine the neural

network parameters i.e. the weights. Every neural network requires a stopping criterion for the

training process to prevent the neural network from over fitting on the training data as a neural

network can achieve an arbitrarily low MSE in-sample. A popular stopping criterion is the total

number of epochs i.e. the number of times a network under goes back propagation. Too few

epochs could result in the optimal function not being reached while too many epochs might

result in over training. Given that we don’t know the critical values at which under-estimation

transitions into over-fitting, we use an alternate popular stopping criterion is to stop training the

neural network once the forecasting error for the validation sample stops decreasing for a certain

number of epochs called ‘patience’.

Batch size is the number of observations in each random sub-sample for SGD to update

the weights. The smaller the batch size, the larger the number of random samples, the greater

the generalizability of the estimated function. The learning rate controls the amount by which

the weights are updated during back propagation. Usually, smaller batch sizes are paired with

larger number of epochs.A very high learning rate may result in the back propagation algorithm

not finding the minima of the function. A very low learning rate guarantees finding the minima

but slows down the algorithm significantly. A good rule of thumb is to start from smaller

learning rates and batch size and the progress to higher values.

16

Currently, “there is no universally accepted analytical way to determine the optimal

number of neurons and layers for a given classification or regression application, adding large

"degrees of freedom" to the estimation of neural networks” (Jung, Patnam and Ter-Martirosyan

,2018). Some rules of thumb suggested in the academic literature are "somewhere between the

input layer size and the output layer size" (Blum, 1992) and "as many hidden nodes as

dimensions needed to capture 70-90% of the variance [in] the input data" (Boger and Guterman,

1997). However, in practice, the optimal number of layers, nodes and filters is determined

though out-of-sample testing (Tkacz and Hu, 1999).

Note that having multiple filters in the convolutional layer results in a hierarchical

structure – the first filter helps discern the simplest features from the data (like a linear trend)

while each subsequent filter discerns increasingly complex features from the data (such as

pro/anti-cyclical activity). We also use Batch normalization between the convolutional layer

and the LSTM layer. Batch normalization transforms the activations (i.e. output) of the

previous layer such that the mean activation is close to 0 and the activation standard deviation

reaches 1. Batch normalization accelerates the training process of the neural network and may

improve model performance by penalizing complexity marginally i.e. by having a

regularization effect.

Given that there is no previous literature for the estimation of multivariate machine

learning models for India, we choose Grid Search to find and select our optimal

hyperparameters. We choose grid search instead of random search because we do not have any

priors regarding which hyperparameter is more important and thus presume all

hyperparameters are equally important. In the presence of a prior regarding relative importance

of hyperparameters, random search would be a better choice as it would allow greater

exploration of the possible values of that parameter16.

We use a rolling window approach to train and test our model (for the neural network

as well as all other models) as this will allow for structural change in the parameters. Figure 4

presents a graphical depiction of this approach. Given that machine learning models benefit

from longer series of data, we set the window size to total number of observations minus the

total number of observations to be forecasted. First we specify the model, the Grid Search

parameters and then check its accuracy across all the windows. For each window, the machine

learning model is fit as follows (see figure 4):

Each window is divided into two parts: the training period and the out-of-sample testing

period. 10% of the total observations in the window form the out-of-sample data while the

remaining comprise the training data. The out-of-sample set is further divided into two parts:

the validation data and the testing data. Of the out-of-sample set, the last observation is the test

data and the remaining observations form the validation data. Each machine learning model is

fit on the training data and is validated for accuracy in the validation sample. Thus, for W

windows, average validation MSE is

16 A “Gaussian process analysis of the function from hyperparameters to validation set performance reveals that for most

data sets only a few of the hyper-parameters really matter, but that different hyperparameters are important on different data

sets”. (Bergstra and Bengio, 2012)

17

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑀𝑆𝐸 =
1

𝑊
∑ 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑀𝑆𝐸𝑖

𝑊

𝑖=1

The model with the lowest average validation MSE is chosen as the best model. The

best model is then used for forecasting the testing observation in each window. Given that the

last observation is of every window is the testing window, the number of windows equals the

number of testing observations.

Additional Concerns while Training a Neural Network

 The “training process for a neural network is subject to stochasticity” (Smalter Hall and

Cook, 2017). First, the initial weights for each neural network are small random weights not

equaling to zero.17 Second, the use of random sub samples in the optimization process. Third,

we use ‘dropout’ which is a regularization techinque whereby the neural network ignores the

output of a randomly selected subset of nodes to limit the “over-dependence of the model on

any one node” and thus reduce the potential for over-fitting (Smalter Hall and Cook, 2017) . As a

consequence of this stochasticity, training the same model repeatedly results in different weights

and thus different forecasts in each run. To accommodate this variance, we train 30 instances

of each model, allowing the computation of expected model accuracy across multiple runs of

the same model. Thus, to select the best neural network architecture, we choose the architecture

which gives the lowest 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑀𝑆𝐸 across 30 runs of each rolling window.

Furthermore, given that we use a rolling window approach to estimation, the weights of the

model are updated by each new window, allowing the weights to be updated iteratively.

4. Empirical Analysis

 In this section, we present the results for forecasting error that result under the various

methods considered in the previous section. Our principal variable for forecast is the headline

CPI inflation (y-o-y) at varying horizons for 3 emerging market economies: India, China and

South Africa. We forecast y-o-y inflation because it has lower seasonality and volatility than

month on month (m-o-m) inflation. We choose the lowest available frequency for both the

dependent variables which is the monthly level. The data for India is obtained from CEIC while

the data for China and South Africa is obtained from the FRED database.18 Table 3 presented

the data period used for each country as well. The unit of observation used for analysis is data

at the monthly level.

17 Importantly, “if the weights are near zero, then the operative part of the sigmoid is roughly linear, and hence the neural network

collapses into an approximately linear model. Hence the model starts out nearly linear, and becomes nonlinear as the weights

increase” (Hastie, Tibshirani and Friedman, 2017).

18 To calculated the CPI inflation (y-o-y) we use the CPI (Combined - 2012 base year) series as calculated by the Central Statistical

Organization (CSO), India and rebase it using the IMF CPI series.

18

4.1 Data Preparation

For each dependent variable, we choose independent variables based on the following two

criterions:

1) is the variable available for the entirety of the training and testing period?

2) if the answer to (1) is yes, is the variable available at the monthly level?

If a variable meets these two criterions, we use it for forecasting the dependent variable under

consideration. Beyond these two criterions, we do not use any other filter to choose the

independent variables.

 Broadly, the suit of independent variables considered fall into the following categories

: WPI and its Subcomponents, CPI and its Subcomponents, food related indicators, oil related

indicators, automobile industry indicators, electricity generation related indicators, monetary

policy and finance related variables and trade related variables. Additionally, for China and

South Africa, the OECD Composite Leading Indicators (CLI) are also included as independent

variables ((See Appendix A: Table 1 - 3 for more details).

 Given that our dependent variables measure the y-o-y change, we transform each

independent variable into its y-o-y change equivalent. Next given that we are using a rolling

window approach, in each window we normalize the data in the training sample because

machine learning methods are not scale invariant, especially deep neural networks. In fact, for

the deep neural networks, after normalization, the data is rescaled to a suitable range (-1 to 1

in our case) as DNNs are not invariant to the magnitude of the data. The normalizing constants

(mean and standard deviation) and the rescaling parameters from the training sample are used

to normalize and rescale the data in the validation and testing samples to ensure that the out-

of-sample data does not have a look forward bias.

For each forecast horizon h, we start from the hth lag and include a maximum of 12 lags of the

dependent variable and each independent variable for each forecast horizon for each country.

Thus, the 1 month ahead forecast uses the 1st to 12th lags while the 12 month ahead forecast

only uses the 12th lag. This allows us to investigate the effectiveness of machine learning

models both in scenarios where N<P and N>P.

4.2 Results for India

We start with a comparison of the RMSE and the MAE for all the ML models at various

horizons (1 month to 12 months) in Table 4. At the one month horizon, we find that the

naïve/MA model performs the best when either RMSE or MAE are considered. In particular,

the MAE for the naïve forecast is 0.46% whereas the best neural network method has a

forecasting error of 0.57%. Thus, given that our average inflation rate in the testing period is

3.58%, this corresponds to an error of 12.85% (15.92% relative to this average value).

However, the key power of the neural network approach comes about for longer

forecasting horizons. In particular, for the 3 month ahead forecast, the naïve forecast error

increases to 1.13%, which is a large error of almost 31.56%. Most of the other linear models

19

(shrinkage and tree bases models) have similar or worse performance relative to the naïve

forecast. In contrast, the neural net models have a forecast error between 0.5% to 0.68% which

is a huge increase in forecasting ability relative to the benchmark model as well as all other

methods. In terms of forecasting error, the reduction in forecasting error of the best neural net

model (CNN+LSTM) relative to the benchmark model is 48.15% if one considered the RMSE,

and 55.54% if one considered the MAE. Another interesting feature that comes out here is that

all the other non-neural network methods used (shrinkage and tree based models) have worse

performance relative to the naïve model for this horizon of forecast.

Next, we examine the 6 month forecast performance. Here again, the best neural

network model (CNN) has a lower forecast error using the MAE relative to the naïve forecast

by 56.3%. It is also important to note that other neural net methods – encoder decoder and

CNN+LSTM also perform much better, reducing the forecast error by 47%-48%. In contrast,

the best possible non-neural net method – the elastic net – has a forecast error improvement of

27.27% relative to the benchmark model.

Note also that the absolute error of the forecast (regardless of the model) goes up for

the longer forecasting horizon. Here again, the increase in forecast error of the 3 month relative

to the 1 month is around 145% (1.13% relative to 0.46% using the MAE). In contrast, for the

best neural network model, the increase in forecast error measured by the MAE is much more

modest 19.26% (0.571 to 0.682) for the encoder-decoder. This pattern continues even for the

12 month forecast where the naïve model has a forecast error of 1.16%, while the encoder

decoder has a forecast of 0.84%. In contrast to these two methods, almost all the other methods,

whether they be SARIMA or shrinkage models, show huge increases in forecast error which

essentially make them irrelevant tools for prediction at the one year horizon, as they have much

larger prediction errors relative to the naïve model.

It is clear from the above table that shrinkage or tree based models are not particularly

useful for inflation prediction in India. This is not surprising in the light of the earlier discussion

that these methods are not well suited to the time series setting, especially in the presence of

structural change and non-stationarity. India has undergone a lot of structural changes in the

last two decades, and in particular, has moved to an explicit inflation target in the last 5 years.

One counter argument to the above is to use parameters estimated with a limited time series

focusing on the recent past. However, we already incorporate this approach using the rolling

window estimation for all the methods. Thus, any structural change that can be captured is

already done so at least in the sense of ignoring all observations prior to the rolling window

period. Thus, this result suggests that shrinkage and tree based models are fundamentally

unsuited to inflation forecasting in the Indian context.

The above analysis implies that neural network methods dominate other method

learning methods, linear methods and naïve forecasts. However, an alternate ‘popular’ metric

used, as evidenced from the above press articles, for evaluating accuracy of a given method is

the number of times it provides an overestimate relative to an underestimate. It is feasible that

non-linear methods may have lower absolute and square error, but may still be subject to

average bias. To evaluate this, we tabulate the number of times each method provides an

overestimate relative to the actual inflation. Recall that the training period was in the pre-

demonetization period, prior to the large crash in food and vegetable prices post-

demonetization, while the testing period does include the large crash in food prices.

20

This is also motivated by a large degree of interest in the press and policy circles that

the Reserve Bank of India was consistently overestimating inflation rates. In an article titled

“Has RBI consistently overestimated inflation forecasts,” published in LiveMint, 2017, the

author Tadit Kundu argues that RBI has been consistently overestimating inflation in 2015-

2016. At the same time, this article argues that this is true for other central banks as well and

that this is true for professional forecasters as well.19 On the other hand, a Mint Street Memo

authored by Raj et al (2019) argues that the large forecast errors were attributable to large

unanticipated food price shocks, and that countries with high share of food prices in their CPI

baskets tended to have higher forecast errors. The authors further argue that RBI forecasts did

not have any bias if one excluded the demonetization period and compared favorably to other

central banks, especially if one considered the fact that inflation in India is much more volatile.

Thus, one might expect that most methods have a fraction of observations with

overestimate to be greater than 50%, although unbiasedness in the long run implies that this

fraction should be close to 50%. Table 5 presents the results of this analysis. For the 1 month

forecast, the naïve forecast has a fraction of overestimates of 56.67%, which is the closest to

the 50%. On the other hand, shrinkage and tree based models have a large positive bias with

overestimate fractions ranging from 70%-90%, while neural network methods have

overestimate fractions ranging from 30% to 64%. If one took an average of the neural networks,

this works out around 51.3%, which is quite close to the expected fraction of 50%.

For the 3 month forecast, the naïve forecast overestimates inflation 70% of the time.

Shrinkage and tree based models also perform poorly with overestimate fractions ranging from

66.67% to 90%. In contrast, neural networks have overestimate fractions ranging from 46.67%

to 76.67%, which implies an average overestimate fraction of 57.45% which is much closer

than the other methods. This continues for the other horizons.

An observation that is pertinent to mention here is that the average of the 3 neural

network method has an overestimate fraction that is much closer to 50% relative to each

individually. This suggests that an average of the forecasts of these 3 methods may perform

much better than each of them, a topic to which we will return towards the end of this section.

Interestingly, the Wilcoxson statistics that tests for the difference in distribution of the

predicted and actual values implies that the distribution of neural net forecasts does not differ

significantly from the distribution of the actual inflation for almost all horizons, with the

exception of the exception of the CNN+LSTM forecast for the 3 and 9 month horizon. On the

other hand, almost all other method forecast differ significantly from the realized values,

suggesting that neural network methods are likely to be significantly better even at forecasting

the distribution of the realized values. We leave an evaluation of the distribution of the quantiles

of the inflation for a future revision of this paper.

4.3 Time Series Examination

The previous sub-section examined the average performance of various methods in

forecasting inflation. To enhance ease of interpretation, we focus only three variables for the

time series analysis – the actual inflation, the best benchmark method (the naïve forecast in all

19 “Inflation targeting: Did India sleepwalk into a disaster,” Economic Times, Dec 21, 2018

21

cases) and the best machine learning (always one of the three methods of estimation for neural

network for all forecast horizons above 1 month). In each case, the best method is defined by

the one with the lowest RMSE.

Figure 5A shows the time series performance of 1 month forecasts for naïve and best

machine learning forecast relative to actual. It is clear that both the naïve and the best machine

learning overestimate inflation in the period when inflation was reducing – from Oct 2016 to

June 2017. In the period from July 2017 to April 2018, both methods underestimate the actual

inflation. Similarly, from June 2018 to the end our sample period, both methods overestimate

the true inflation. One pattern that emerges for the 1 month horizon is that both methods lag

the true inflation and underestimate inflation in periods of increasing inflation and overestimate

inflation in periods of reducing inflation.

Next, in figure 5B, we present a similar analysis for the 3 month forecast. One important

fact that emerges is that the tracking error for both methods is much larger than that in the 1

month forecast. At the same time, it is clear that the naïve forecast is much worse relative to

the actual inflation. Interesting, the machine learning model over predicts the dip in inflation

during the demonetization and overpredicts the bounce-back as well. However, from May

2018, the model tracks actual inflation quite well and in fact, predicts the turning points quite

well.

Figures 5C, 5D & 5E provide these comparison for the 6 month, 9 month and 12 month

horizons. At the 6 month horizon (Figure 5C), both methods have a significant deterioration

in performance. The demonetization episode registers for the machine learning methods while

the naïve forecast completely misses it. From June 2017 to July 2018, the best ML method

shows a marginal increase, while the naïve forecast has the wrong direction of the trend as well

as a very large forecasting error. In the post June 2018 period, the best ML method tracks the

direction as well as the magnitude of the actual inflation very well.

In contrast, at the 9 month and 12 month horizon, the performance of the best ML

methods improves substantially. With the exception of the large inflation dip in June 2017, ML

captures both the direction as well as magnitude of the actual inflation very well. It also

performs well in the pre-demonetization period. In both cases, the naïve forecast varies little as

anticipated.

4.4 Results for other emerging markets

 Next, we examine the extent to which our results are generalizable using two other

emerging markets – China and South Africa. We only estimate the neural network models as

the results for the other methods were significantly poorer for all the other methods. Also, we

focus only on the 12 month forecast, as this had the largest prediction error. A first difference

of the results relative to India is that SARIMA performs much somewhat better for South Africa

relative to the MA or naïve forecast. Hence, the benchmark model for South Africa we uses is

the SARIMA model, while for China, the naïve or MA forecast performs much better relative

to SARIMA, as was the case with India.

 Table 6 presents the results of this estimation. For China, the improvement in

performance using neural networks is much more modest, ranging from 5.8% for the encoder

22

decoder technique and 33.42% for the CNN-LSTM model for the MAE measure. The increase

in accuracy using RMSE are even smaller. On the other hand, for South Africa, using neural

networks enhances the forecasting ability significantly, with decreases in MAE ranging from

42% to 57%.

In Table 7, we present the results of the fraction of forecasts that were overestimates.

For China, the naïve forecast does very well, overestimating the realized inflation around 46%

of the time. In contrast, South Africa appears to be much more similar to India in that both the

naïve forecasts are overestimated for a large fraction of the testing sample (between 86% and

90%). For South Africa, using neural network methods improves the fraction of times that

overestimation happens.

 Figure 6 presents the time series of 12 month forecasts using the best machine learning

method and the actual inflation rates along with the benchmark model for China. This figure

suggests quite a different picture relative to the comparisons in Table 6. In particular, the

benchmark model is quite smooth and does not reflect a lot of the dynamics of the inflation

rate. In contrast, the machine learning model has much more variable predictions, which, at

least in a visual sense, vary more with the data. There are notable exceptions – the peak in July

2018 and the trough in Feb 2019, both of which are completely missed by the machine learning

algorithm. In contrast, for both of these episodes, the benchmark model, by virtue of its relative

flatness happens to be much closer to the realized inflation.

 Figure 7 presents the time series results for the 12 month ahead forecast for South

Africa. Quite clearly, the results are in line with the increase in forecasting ability based on the

MAE and RMSE results. In addition, the neural network method captures the overall decrease

in inflation from June 2017 to March 2018 and the reversal. The benchmark model’s overall

trends are completely reversed – it predicts an increase in this period, and then predicts a

decrease from Feb 2018 onwards, when actual inflation was increases. Nevertheless, even for

the neural network methods, there are sub-periods when the prediction diverges significantly

from the actual. In May 2017, actual inflation decreased significantly while the neural net

predicted an increase till July 2017. In June 2018, ML predicted a sharp decrease in inflation

while actual inflation increased.

4.5 Combined neural net forecast

 One of the issues that came up in earlier sections is that the bias in the different neural

network forecasts seemed to be in opposite directions in several cases. As we had alluded to

earlier, this suggested that a combined forecast using the different neural network methods may

be better than each of these individually. To test this, we combine the three forecasts by

averaging them and recompute the accuracy of the resulting forecast. Tables 8A and 8B give

the results of this approach. We find large increases in forecast accuracy using the combined

forecast especially for China where the increase in forecast accuracy using MAE increases to

30%. The direction fraction of overestimate also comes much close to 50%.

4.5 Variable importance

23

 Recall we had mentioned in the introduction that one of the disadvantages of the neural

net methods is that it is not feasible to estimate the partial effects of each individual variable.

One approach that partially alleviates this ‘black-box’ nature of this disadvantage is an analysis

called ‘variable importance’, which describes “how much a prediction model’s accuracy

depends on the information in each covariate” (Fisher, Rudin, and Dominici, 2018). For each

machine learning method under consideration, we attempt to understand which independent

variables contribute most significantly to the forecast accuracy i.e. which variables contribute

most significantly to a reduction in the MSE. For each forecasting horizon, we determine the

variable importance for the best performing machine learning method.

 Given that we are considering three disparate classes of machine learning models, we

use a different measure of variable importance for each class. For each shrinkage (linear)

method, we compare the absolute size of the coefficients of the independent variables. The

larger the absolute value of the coefficient, the more important the variable is to the accuracy

of the forecast (and vice-versa).

 For tree based methods, the importance of each independent variable is gauged by

examining decline in the RSS achieved by splitting the sample using a given independent

variable, averaged over all the bootstrapped trees. The larger the reduction in the RSS, the more

important the independent variable is (and vice versa).

 The deep neural networks are the most difficult to interpret. We use a simple but

effective approach known as model reliance (MR) as proposed by Fisher, Rudin, and

Dominici (2018). MR “measures the importance of a feature by calculating the increase in

the model’s prediction error after permuting the feature” but leaving all the other

independent variables and dependent unchanged (Molnar, 2019)20. Permuting/shuffling an

independent variable breaks the relationship between the independent variable and the

dependent variable. The shuffling approach is especially appropriate for deep neural

networks as random shuffling invalidates the spatial and temporal information in time series

data. Effectively, this creates an unconditional counterfactual for 𝑋𝑝. An independent

variable is important if shuffling its values increases the MSE as this indicates that the model

relied on the actual realization of the independent variable for forecasting �̂�𝑖. The

permutation variable importance (𝑃𝐼𝑉𝑝) is calculated as follows: After having trained the

model we arrive at the final MSE for the deep neural network (𝑀𝑆𝐸𝑟𝑒𝑎𝑙). Then, for each

variable 𝑋𝑝 , the following is repeated :

Step 1: 𝑋𝑝 is randomly shuffled leaving all the other independent variables and 𝑦𝑖

unchanged

Step 2: Using the dataset with the shuffled 𝑋𝑝 , �̂�𝑖 is forecasted again to arrive at the

new MSE (𝑀𝑆𝐸𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑,𝑝).

20 In machine learning literature, features refer to independent variables

24

Step 3: Given that the permutation process is inherently random, we repeat Steps 1

and 2 a 100 times and calculate the mean of 𝑀𝑆𝐸𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑,𝑝 across the 100 iterations

(𝑀𝑀𝑆𝐸𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑,𝑝).

Step 4: 𝑃𝐼𝑉𝑝 is calculated as follows

𝑃𝐼𝑉𝑝 = (

𝑀𝑀𝑆𝐸𝑝𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑
− 𝑀𝑆𝐸𝑟𝑒𝑎𝑙

𝑀𝑆𝐸𝑟𝑒𝑎𝑙
) 100

Variable Importance Results: India

We determine the 10 most important variables for each of the best performing machine

learning models for each horizon for India. For the 1 month ahead forecast - where the best

performing machine learning model was the linear elastic net model- we find that the only non-

zero coefficient and thus the most important variable is the first lag of CPI (Y-o-Y). It is found

that for the 3 months ahead, 6 months ahead and 12 months ahead forecasts, the sub-components

of CPI and WPI, food, fuel and banking related variables contribute most significantly to the

accuracy of the relevant forecast, which is broadly in line with the literature on the determinants

of CPI in India. The results for the 9 months ahead forecast find lags of rainfall and Net FII and

FPI to be the most importance variables for forecasting CPI in India.

Conclusion

 We conducted an analysis for three emerging markets – India, China and South Africa

using a variety of machine learning methods. Out of the approaches used, neural networks were

most effective in reducing forecast errors relative to SARIMA or naïve forecasts. This suggests

that neural networks are a good potential approach for forecasting inflation for other emerging

economies where there are less number of cross-sectional and time series of data available.

Future research would compare on how the forecasts in this compare to professional forecasters

and central banks.

25

References

Athey, S. and Imbens, G. (2019). Machine Learning Methods That Economists Should Know

About. Annual Review of Economics, 11(1).

Atkeson, A. (2001). Are Phillips curves useful for forecasting inflation?.

Bergstra, J. and Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. Journal of

Machine Learning Research.

Biau, O. and D'Elia, A. (2010). Euro area GDP forecasting using large survey datasets A random

forest approach.

Breiman, L. (2001). Statistical Modeling: The Two Cultures (with comments and a rejoinder by the

author). Statistical Science, 16(3), pp.199-231.

Chakraborty, C. and Joseph, A. (2017). Machine Learning at Central Banks. SSRN Electronic

Journal.

Chuku, C., Oduor, J. and Simpasa, A. (2017). Intelligent forecasting of economic growth for African

economies: Artificial neural networks versus time series and structural econometric models.

Cunha Medeiros, M., Vasconcelos, G., Veiga, A. and Zilberman, E. (2018). Forecasting Inflation in a

Data-Rich Environment: The Benefits of Machine Learning Methods. SSRN Electronic Journal.

Fisher, A., Rudin, C. and Dominici, F. (2018). All Models are Wrong but Many are Useful: Variable

Importance for Black-Box, Proprietary, or Misspecified Prediction Models, using Model Class

Reliance.

Friedman, J. (1999). Greedy Function Approximation : A Gradient Boosting Machine.

Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep learning.

Hastie, T., Friedman, J. and Tibshirani, R. (2017). The elements of statistical learning. New York:

Springer.

James, G., Witten, D., Hastie, T. and Tibshirani, R. (n.d.). An introduction to statistical learning.

Jung, J., Patnam, M. and Ter-Martirosyan, A. (2018). An Algorithmic Crystal Ball: Forecasts-based

on Machine Learning. IMF Working Papers, 18(230), p.1.

McAdam, P. and McNelis, P. (2005). Forecasting inflation with thick models and neural

networks. Economic Modelling, 22(5), pp.848-867.

Molnar, C. (2019). Interpretable Machine Learning:A Guide for Making Black Box Models

Explainable.

Mullainathan, S. and Spiess, J. (2017). Machine Learning: An Applied Econometric

Approach. Journal of Economic Perspectives, 31(2), pp.87-106.

Nakamura, E. (2005). Inflation forecasting using a neural network. Economics Letters, 86(3), pp.373-

378.

Pratap, B. and Sengupta, S. (2019). Macroeconomic Forecasting in India: Does Machine Learning

Hold the Key to Better Forecasts? RBI Working Paper.

26

Raj, J. and Dhal, S. (2008). The Inflation Rate in India: Some Applied Issues.

Raj, J., Kapur, M., Das, P., George, A., Wahi, G. and Kumar, P. (2019). Inflation Forecasts: Recent

Experience in India and a Cross-country Assessment.

Sanyal, A. and Roy, I. (2014). Forecasting Major Macroeconomic Variables in India – Performance

Comparison of Linear, Non-linear Models and Forecast Combinations.

Smalter Hall, A. and Cook, T. (2017). Macroeconomic Indicator Forecasting with Deep Neural

Networks. SSRN Electronic Journal.

STOCK, J. and WATSON, M. (2007). Why Has U.S. Inflation Become Harder to Forecast?. Journal

of Money, Credit and Banking, 39, pp.3-33.

Tiffin, A. (2016). Seeing in the Dark: A Machine-Learning Approach to Nowcasting in Lebanon. IMF

Working Papers, 16(56), p.1.

Tkacz, G. and Hu, S. (1999). Forecasting GDP Growth Using Artificial Neural Networks.

Tong, H. (1995). Non-linear time series. Oxford: Clarendon.

Varian, H. (2014). Big Data: New Tricks for Econometrics. Journal of Economic Perspectives, 28(2),

pp.3-28.

27

Tables

Table 1: Hyper parameters for Tree Based Methods

Hyper-parameters Hyper-parameters Domain
Random

Forests

XG

Boosted

Trees

Max Tree Depth 1,depth till only pure leaves x x

Min. Samples for Splitting a Node 2,No. of Obs. x x

Min. Samples to form a Leaf 1,No. of Obs. x x

Max. no. of Leaf Nodes in a Tree 1, No. of pure leaves x x

No. of Independent Variables to

Consider to Find Best Split for a Node

1, No. Independent Variables x x

No. of Trees 1, ∞ x x

Columns Sample by Tree (%) ε,1 x

Columns Sample by Level (%) ε,1 x

Columns Sample by Node (%) ε,1 x

L1 Regularization 1, ∞ x

L2 Regularization 1, ∞ x

Learning Rate 0,1 x

Parameters Threshold variables and values
*the x denotes that the hyper parameter is needed for the model under consideration

Table 2: Hyperparameters for Neural Networks

Hyperparameter Hyperparameter Domain CNN
CNN+

LSTM

Encoder

Decoder

Patience 0, ∞ x x x

Learning Rate 0,∞ x x x

No. of Epochs 0,∞ x x x

Optimizer Type SGD/ADAM x x X

Batch Size 1, No. of Obs. x x x

No. of Steps In 1, No. of Obs. in Test Set x x x

No. of Conv. Layers 1, ∞ x x x

Conv. Activation Layer Type Linear/ Tanh /Logistic/ReLU x x x

No. of Filters per Conv. Layer 1, ∞ x x x

Filter Size 1, No. of Steps In*No. Independent Variables x x x

Stride Size 1, ∞ x x x

Sub-sampling Layer type Max Pooling / Average Pooling x x x

Sub-sampling Layer Size 1, No. of Steps In – Filter Size x x x

No. of Dropout layers 0,No. of Hidden Layers x x x

Dropout Percentage 0,1 x x x

No. of Full Connected Hidden Layers 0, ∞ x x x

No. of Hidden Nodes 0, ∞ x x x

Batch Normalization Yes/No x x x

Output Layer Activation Type Linear, Tanh, Logistic, ReLU x x x

No. of LSTM layers 1, ∞ x x

No. of LSTM nodes 1, ∞ x x

No. Repeat Vector 1, ∞ x

Parameters Network weights
*the x denotes that the hyper parameter is needed for the model under consideration

28

Table 3: Sample Construction

Count

ry
Full Period

Window

Size

Training

Obs. per

Window

Validation

Obs. per

Window

Test

Obs. per

Window

Consolidated

Testing Period

No. of

Independent

Variables

India 1st Jan 03 – 1st Feb 19

(195 obs.) 153 138 14 1

1st Sep 16 – 1st Feb

19

(30 obs.)

48

China 1st Jan 03 – 1st July 19

(200 obs.) 158 142 15 1

1st Feb 17 – 1st July

19

(30 obs.)

30

South

Africa

1st Jan 03 – 1st July 19

(200 obs.) 158 142 15 1

1st Feb 17 – 1st July

19

(30 obs.)

60

29

Table 4 : India: 1 Month to 12 Month Ahead Forecasts

Horizon Category Method RMSE MAE
RMSE Accuracy

Increase (%)

MAE Accuracy

Increase (%)

1 Month

Ahead

Benchmark Model
SARIMA 2.388 1.932 -318.500 -316.24

MA/Naive 0.571 0.464

Shrinkage Models Elastic Net 0.622 0.510 -8.917 -9.97

Tree Based Models
Random Forests 1.414 1.237 -147.752 -166.57

XG Boost 1.191 0.877 -108.798 -88.84

Neural Networks

CNN 0.962 0.773 -68.526 -66.43
CNN+LSTM 0.773 0.592 -35.487 -27.55

Encoder Decoder 0.722 0.571 -26.449 -22.93

3 Months

Ahead

Benchmark Model
SARIMA 2.388 1.932 -79.713 -70.89

MA/Naive 1.329 1.130

Shrinkage Models Elastic Net 2.419 2.099 -82.040 -85.66

Tree Based Models Random Forests 2.211 1.928 -66.398 -70.59
 XG Boost 1.585 1.151 -19.313 -1.85

Neural Networks CNN 0.800 0.606 39.774 46.37
 CNN+LSTM 0.689 0.503 48.152 55.54
 Encoder Decoder 0.854 0.682 35.700 39.65

6 Months

Ahead

 Benchmark Model
SARIMA 2.388 1.932 -32.137 -18.13

MA/Naive 1.807 1.635

Shrinkage Models Elastic Net 1.521 1.189 15.826 27.27

Tree Based Models Random Forests 1.735 1.391 3.973 14.92
 XG Boost 1.903 1.564 -5.282 4.38

Neural Networks CNN 0.922 0.715 48.987 56.30
 CNN+LSTM 1.065 0.839 41.063 48.69
 Encoder Decoder 1.074 0.866 40.542 47.04

9 Months

Ahead

Benchmark Model
SARIMA 2.388 1.932 -36.12 -25.71

MA/Naive 1.754 1.537

Shrinkage Models Elastic Net 2.208 1.790 -25.86 -16.50

Tree Based Models Random Forests 3.184 2.848 -81.50 -85.30
 XG Boost 1.474 1.163 15.99 24.33

Neural Networks CNN 1.032 0.830 41.18 46.02
 CNN+LSTM 1.106 0.785 36.98 48.91
 Encoder Decoder 0.730 0.558 58.37 63.67

12 Months

Ahead

Benchmark Model
SARIMA 2.388 1.9317 -63.52 -66.06

MA/Naive 1.460 1.1633 0.00 0.00

Shrinkage Models Elastic Net 2.610 2.3122 -78.75 -98.76

Tree Based Models Random Forests 2.995 2.7957 -105.10 -140.32
 XG Boost 2.203 1.8550 -50.86 -59.46

Neural Networks CNN 0.888 0.6858 39.21 41.05
 CNN+LSTM 0.846 0.6446 42.08 44.59
 Encoder Decoder 1.088 0.8483 25.47 27.08

30

Table 5: Forecast Bias - India: 1 Month to 12 Months Ahead Forecasts

Horizon Category Method Over Estimate (%) Wilcox Statistic: Forecast

1 Month

Ahead

Benchmark Models
SARIMA 90.00 10***

MA/Naive 56.67 194

Shrinkage Model Elastic Net 70.00 63***

Tree Based Models
Random Forests 90.00 10***

XG Boost 80.00 57***

Neural Networks

CNN 30.00 161.13

CNN+LSTM 64.19 129.06

Encoder Decoder 60.00 192.03

3

Months

Ahead

Benchmark Model
SARIMA 90.00 10***

MA/Naive 70.00 137*

Shrinkage Model Elastic Net 86.67 24***

Tree Based Models Random Forests 90.00 7***

 XG Boost 66.67 126*

Neural Networks CNN 46.67 218

 CNN+LSTM 76.67 97**

 Encoder Decoder 49.03 210.84

6

Months

Ahead

Benchmark Model
SARIMA 90.00 10***

MA/Naive 70.00 135*

Shrinkage Model Elastic Net 70.00 59***

Tree Based Models
Random Forests 76.67 46***

XG Boost 83.33 41***

Neural Networks

CNN 43.01 168.06

CNN+LSTM 47.31 201.03

Encoder Decoder 47.31 203.29

Level of significance: * 5% , **1% , ***0.1%

31

Table 5 (continued): Forecast Bias - India: 1 Month to 12 Months Ahead Forecasts

9

Months

Ahead

Benchmark Model
SARIMA 90.00 10***

MA/Naive 63.33 128*

Shrinkage Model Elastic Net 73.33 85***

Tree Based Models
Random Forests 100.00 0***

XG Boost 73.33 59***

Neural Networks

CNN 43.33 195

CNN+LSTM 82.58 45.16***

Encoder Decoder 64.52 132.23

12

Months

Ahead

Benchmark Model
SARIMA 90 10***

MA/Naive 70.00 87***

Shrinkage Model Elastic Net 86.67 19***

Tree Based Models
Random Forests 100.00 0***

XG Boost 66.67 89***

Neural Networks

CNN 36.67 169

CNN+LSTM 65.59 147.06

Encoder Decoder 53.44 208.94

Level of significance: * 5% , **1% , ***0.1%

32

Table 6: Emerging Market Forecasts - 12 Months Ahead Forecast

Country Category Method RMSE MAE

RMSE

Accuracy

Increase (%)

MAE

Accuracy

Increase (%)

China

Benchmark
SARIMA 1.012 0.911 -87.48 -104.08

MA/Naive 0.540 0.447 0.00 0.00

Neural Networks

CNN 0.527 0.365 2.27 18.23

CNN LSTM 0.407 0.297 24.63 33.42

Encoder Decoder 0.526 0.420 2.49 5.85

South

Africa

Benchmark
SARIMA 1.217 1.112

MA/Naive 1.418 1.145 -16.52 -2.963

Neural Networks

CNN 0.635 0.518 47.85 53.400

CNN LSTM 0.590 0.469 51.52 57.849

Encoder Decoder 0.809 0.643 33.48 42.176

Table 7: Emerging Market Forecasts - 12 Months Ahead Forecast – Forecast Bias

Country Category Method

Over

Estimate

(%)

Wilcox

Statistic:

Forecast

China

Benchmark
SARIMA 100 0***

MA/Naive 46.66 163

Neural

Networks

CNN 60.00 168.03

CNN LSTM 37.42 158.29

Encoder Decoder 63.33 202.00

South

Africa

Benchmark
SARIMA 86.67 45***

MA/Naive 90.00 42***

Neural

Networks

CNN 53.33 195

CNN LSTM 70.00 106***

Encoder Decoder 62.69 154.0323

33

Table 8A: Neural Network Consensus Model – Forecast Accuracy

Country Horizon Method RMSE MAE

RMSE

Accuracy

Increase (%)

MAE

Accuracy

Increase (%)

India 1 Month Average NN 0.613 0.517 -7.46 -11.35

 3 Month Average NN 0.604 0.458 54.55 59.52

 6 Month Average NN 0.877 0.725 51.45 55.66

 9 Month Average NN 0.699 0.582 60.17 62.13

 12 Month Average NN 0.710 0.559 51.35 51.93

China 12 Month Average NN 0.395 0.312 26.82 30.02

South Africa 12 Month Average NN 0.429 0.364 64.72 67.22

Table 8B: Neural Network Consensus Model – Forecast Bias

Country Horizon Method
Over

Estimate (%)

Wilcox Statistic:

Forecast

India 1 Month Average NN 56.67 201

 3 Month Average NN 50.00 213

 6 Month Average NN 36.67 184

 9 Month Average NN 56.67 134*

 12 Month Average NN 53.33 220

China 12 Month Average NN 53.33 195

South Africa 12 Month Average NN 66.67 149

Level of significance: * 5% , **1% , ***0.1%

34

Graphs

Figure 1: Fully Connected Feed Forward Neural Network

Legend

= input node (holds true for all subsequent figures)

= hidden/computational node (holds true for all subsequent figures)

T is the total number of nodes in the input layer. H is the total number of hidden nodes in the 1st hidden layer (Layer 2) and 𝐻2

is the total number of hidden nodes in hidden layer two (Layer 3). 𝑧1
𝑜 is the weighted sum for the output layer and �̂�𝑛𝑛 i.e. the

predicted value of 𝑦𝑖 the activation of the output layer.

 𝐿(𝑦𝑖 , �̂�𝑖,𝑛𝑛)

𝑋1

𝑋𝑇

𝑧1
1

𝑧𝐻1
1

𝑎𝐻1
1

𝑤311

𝑤321

𝑤3𝐻21

𝑤1𝑇𝐻

𝑤1𝑇1

𝑤1𝑇2

𝑤12𝐻

𝑤122

𝑤121

𝑎1
1

𝑤111

 𝑤112

𝑤11𝐻

Back Propagation

If 𝑒 ≤ 𝐸

Input layer

(Layer 1)

Hidden layer 1

(Layer 2)

 Feed Forward Mechanism

𝑧1
2

𝑧2
2

𝑧𝐻2
2

𝑎1
2

𝑎2
2

𝑎𝐻2
2

Hidden layer 2

(Layer 3)

Output Layer

(Layer 4)

𝑤211

𝑤21𝐻2

𝑤212

𝑎2
1 𝑧2

1

𝑤2𝐻12

𝑤2𝐻12

𝑤2𝐻1𝐻2

𝑤22𝐻2

𝑤222

𝑤221

 𝑋2 𝑧1
𝑜 𝑦𝑖,𝑛𝑛

35

Legend

= input chunk 𝑥𝑐

𝒘1
𝒘2

𝒘3

𝒘11
𝒘12

𝒘13
𝒘14

𝑥11 𝑥12

𝑥13
𝑥14

𝑋𝑝

𝑇

𝑧11 𝑎11
𝑚11

𝑓1

𝑓2

𝑓3

𝑃1

𝑃2

𝑃3

Pooling Layer Fully connected

Layer

Input Layer

Feature Maps

Output

Layer

�̂�𝑖,𝑐𝑛𝑛

Figure 2: Convolutional Neural Network

= Filter 𝒘𝑓

= Disjoint area d

Convolutional Layer

36

Figure 3: Long Short Term Memory Network

𝑋1

𝒙𝟐

𝒙𝑷

𝑤311

𝑤321

𝑤3𝐻1

Input layer

(Layer 1)

LSTM layer 1

(Layer 2)

LSTM layer 2

(Layer 3)

Output Layer

(Layer 4)

𝐿𝑆𝑇𝑀11

𝐿𝑆𝑇𝑀12

𝐿𝑆𝑇𝑀1ℎ1

𝐿𝑆𝑇𝑀21

𝐿𝑆𝑇𝑀22

𝐿𝑆𝑇𝑀2ℎ2

𝒙𝟏

�̂�𝑖,𝑙𝑠𝑡𝑚

37

Figure 4: Rolling Window Training and Testing Split

Training 1 V1 T1

 Training 2 V2 T2

 .

 .

 .

 Training N VN TN

Time

For N windows, there are a total of N training, testing and out-of-sample (i.e. validation and testing) data sets. The last observation

of every window (i.e. the test set) is the final prediction in each window such that the N final predictions are temporally sequential

and non-overlapping.

Window 1

Window 2

Window N

Out of Sample1

Out of SampleN

38

Figure 5A

Figure 5B

Figure 5C

39

Figure 5D

Figure 5E

40

Figure 6

Figure 7

41

Appendix A

Table 1: Variable Description - India

Category Variable Name

WPI and Sub Components

Wholesale Price Index (WPI)

WPI Primary Articles

WPIPA

WPIPA Non Food

WPI Manufacturing

WPIMfg Food

CPI and Sub Components

Consumer Price Index (CPI)

CPI Agricultural Labour

CPIAL Food

CPIAL Fuel and Light

CPIAL Clothing

CPIAL Miscellaneous

Oil Related Indicators

West Texas Intermediate (USD)

Crude Petroleum Production

Petrol Price

Diesel Price

Food Related Indicators

Food Grain Stock

Wheat Stock

Rice Stock

Rainfall

Auto Industry Related Indicators

Monthly vehicle sales

Total vehicle sales

Total Automobile Production

Automobile Production (Passenger Vehicle)

Automobile Production (Commercial Vehicle)

Automobile Production (Commercial Vehicle -2 Wheeler)

Automobile Production (Commercial Vehicle -3 Wheeler)

Total Automobile Sales

Automobile Sales (Passenger Vehicles)

Automobile Sales (Commercial Vehicle)

Automobile Sales (2 Wheeler)

Automobile Sales (3 Wheeler)

Electricity Related Indicators Electricity Generation

Monetary Policy and Finance Related

Indicators

Repo Rate

Reverse Repo Rate

Cash Reserve Ratio

Statuary Liquidity Ratio

Bank Rate

M1 Money Supply

42

M2 Money Supply

Commercial Bank Deposits

Total Liabilities RBI

Reserve Money

Trade Related Indicators

India USD Forex

Net Foreign Institutional Investment (FII)/ Foreign Portfolio Investment

(FPI)

Net Foreign Institutional Investment (FII)/ Foreign Portfolio Investment

(FPI) in Equity

Net Foreign Institutional Investment (FII)/ Foreign Portfolio Investment

(FPI) in Debt

Trade Balance

Miscellaneous Cement Production

43

Table 2: Variable Description – China

Category Variable Name

Monetary Policy and

Finance Related

Indicators

M0 for China

M2 for China

Total Reserves excluding Gold for China

Total Reserves excluding Gold for Province of China Taiwan

Share Prices: All shares/broad: Total: Total for China

Total Share Prices for All Shares for China

CPI and Sub Components Consumer Price Index: All Items for China

 Consumer Opinion Surveys: Confidence Indicators: Composite Indicators

 Consumer opinion surveys: Economic Situation: Future tendency

 Net Trade: Value Goods for China

Trade Related Indicators Ratio of Exports to Imports for China

 Broad Effective Exchange Rate for China

 Exports: Value Goods for China

 Imports: Value Goods for China

 International Trade: Exports: Value (goods): Total for China

 International Trade: Imports: Value (goods): Total for China

 U.S. Exports of Goods by F.A.S. Basis to China Mainland

 U.S. Imports of Goods by Customs Basis from China

 National Currency to US Dollar Exchange Rate: Average of Daily Rates

 National Currency to US Dollar Spot Exchange Rate for China

 Real Broad Effective Exchange Rate for China

 Real Effective Exchange Rates Based on Manufacturing Consumer Price

 China / U.S. Foreign Exchange Rate

 Leading Indicators OECD: Leading indicators: CLI: Amplitude adjusted

OECD Composite

Leading Indicators

Leading Indicators OECD: Leading indicators: CLI: Normalised

Leading Indicators OECD: Leading indicators: CLI: Trend restored

Leading Indicators OECD: Reference series: Gross Domestic Product

 Economic Policy Uncertainty Index: Mainland Papers for China

Production Related

Indicators

Producer Prices Index: Economic activities: Industrial activities:

Production: Construction: Total construction: Total for China

Sales: Retail trade: Total retail trade: Value for China

Business Tendency Surveys for Manufacturing: Confidence Indicators

44

Table 3: Variable Description – South Africa

Category Variable Name

CPI and Sub Components

Consumer Price Index: All Items for South Africa

Consumer Opinion Surveys: Confidence Indicators: Composite Indicators:

Consumer Price Index: All Items Excluding Food and Energy for South

Consumer Price Index: Energy for South Africa

Consumer Price Index: Food and non-Alcoholic beverages (COICOP 01):

 Consumer Price Index: Housing water electricity gas and other fuels

Trade Related Variables

Broad Effective Exchange Rate for South Africa

National Currency to US Dollar Exchange Rate: Average of Daily Rates

National Currency to US Dollar Spot Exchange Rate for South Africa

Real Broad Effective Exchange Rate for South Africa

Real Effective Exchange Rates Based on Manufacturing Consumer Price

South Africa / U.S. Foreign Exchange Rate

Total Retail Trade in South Africa

U.S. Exports of Goods by F.A.S. Basis to South Africa

U.S. Imports of Goods by Customs Basis from South Africa

Ratio of Exports to Imports for South Africa

Exports: Value Goods for South Africa

 Imports: Value Goods for South Africa

Monetary Policy and

Finance Related Indicators

3-Month or 90-day Rates and Yields: Interbank Rates for South Africa

3-Month or 90-day Rates and Yields: Treasury Securities for South

Immediate Rates: Less than 24 Hours: Call Money/Interbank Rate for

Immediate Rates: Less than 24 Hours: Central Bank Rates for South

Interest Rates Government Securities Government Bonds for South

Interest Rates Government Securities Treasury Bills for South Africa

Long-Term Government Bond Yields: 10-year: Main (Including Benchmark)

Long-Term Government Bond Yields: Combined Terms for South Africa

M3 for South Africa

Monetary aggregates and their components: Broad money and components:

Share Prices: All shares/broad: Total: Total for South Africa

Total Share Prices for All Shares for South Africa

 Total Reserves excluding Gold for South Africa

Production Related

Indicators

Domestic Producer Prices Index: Manufacturing for South Africa

Orders: Construction: Permits issued: Dwellings / Residential

Producer Prices Index: Economic Activities: Domestic Manufacturing for

Producer Prices Index: Economic Activities: Domestic Mining and

Producer Prices Index: Economic activities: Industrial activities:

Producer Prices Index: Economic activities: Manufacturing: Domestic

Producer Prices Index: Economic activities: Mining and quarrying

Production in Total Manufacturing for South Africa

Production of Total Construction in South Africa

45

Production: Construction: Total construction: Total for South Africa

Production: Energy: Electricity: Total for South Africa

Production: Manufacturing: Total manufacturing: Total manufacturing

Production: Mining: Total mining: Total for South Africa

Business Tendency Surveys for Manufacturing: Confidence Indicators

Sales: Manufacturing: Total manufacturing: Value for South Africa

Sales: Retail trade: Car registration: Passenger cars for South Africa

Sales: Retail trade: Total retail trade: Value for South Africa

Sales: Retail trade: Total retail trade: Volume for South Africa

Sales: Wholesale trade: Total wholesale trade: Value for South Africa

Sales: Wholesale trade: Total wholesale trade: Volume for South Africa

Automobile and Housing

Related Indicators

Passenger Car Registrations in South Africa

Permits Issued for Dwelling in South Africa

OECD Composite Leading

Indicators

Leading Indicators OECD: Component series: BTS - Business situation

Leading Indicators OECD: Component series: BTS - Demand or orders

Leading Indicators OECD: Component series: Car registration - sales

Leading Indicators OECD: Component series: Construction: Original

Leading Indicators OECD: Component series: Interest rate spread

Leading Indicators OECD: Component series: Share prices: Original

Leading Indicators OECD: Leading indicators: CLI: Amplitude adjusted

Leading Indicators OECD: Leading indicators: CLI: Normalized

