Market quality in the time of algorithmic trading

Nidhi Aggarwal Susan Thomas IGIDR Finance Research Group

Presentation at the 4^{th} Emerging Markets Finance conference, Bombay

21 December, 2013

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Since 2000, escalating use of technology in trading on equities markets.
- AT now dominates exchanges worldwide. Concerns about reduced liquidity, 'flash crashes', etc.
- Regulators all over the world are contemplating interventions on AT.
- In search of finding a market failure that justifies regulatory intervention, numerous researchers have asked: What is the effect of AT on liquidity and volatility?
- Main findings: AT generally lowers transactions costs. AT may or may not improve depth. AT may or may not lower volatility.
- Weaknesses of this literature.

- Since 2000, escalating use of technology in trading on equities markets.
- AT now dominates exchanges worldwide. Concerns about reduced liquidity, 'flash crashes', etc.
- Regulators all over the world are contemplating interventions on AT.
- In search of finding a market failure that justifies regulatory intervention, numerous researchers have asked: What is the effect of AT on liquidity and volatility?
- Main findings: AT generally lowers transactions costs. AT may or may not improve depth. AT may or may not lower volatility.
- Weaknesses of this literature.

- Since 2000, escalating use of technology in trading on equities markets.
- AT now dominates exchanges worldwide. Concerns about reduced liquidity, 'flash crashes', etc.
- Regulators all over the world are contemplating interventions on AT.
- In search of finding a market failure that justifies regulatory intervention, numerous researchers have asked: What is the effect of AT on liquidity and volatility?
- Main findings: AT generally lowers transactions costs. AT may or may not improve depth. AT may or may not lower volatility.
- Weaknesses of this literature.

- Since 2000, escalating use of technology in trading on equities markets.
- AT now dominates exchanges worldwide. Concerns about reduced liquidity, 'flash crashes', etc.
- Regulators all over the world are contemplating interventions on AT.
- In search of finding a market failure that justifies regulatory intervention, numerous researchers have asked: What is the effect of AT on liquidity and volatility?
- Main findings: AT generally lowers transactions costs. AT may or may not improve depth. AT may or may not lower volatility.
- Weaknesses of this literature.

- Since 2000, escalating use of technology in trading on equities markets.
- AT now dominates exchanges worldwide. Concerns about reduced liquidity, 'flash crashes', etc.
- Regulators all over the world are contemplating interventions on AT.
- In search of finding a market failure that justifies regulatory intervention, numerous researchers have asked: What is the effect of AT on liquidity and volatility?
- Main findings: AT generally lowers transactions costs. AT may or may not improve depth. AT may or may not lower volatility.
- Weaknesses of this literature.

Solving the weaknesses of the literature

A design that solves the weaknesses of the literature:

- 1. *Clean microstructure*: An exchange with 80% market share of all trading, one of the largest exchange in the world by transaction intensity.
- 2. An exogenous event: Introduction of co-location services in Jan 2010, which was followed by an S-curve of adoption.
- 3. *Recording data well*: Perfect data with every order tagged as "AT" or "non-AT" for every security at the exchange.

(日) (日) (日) (日) (日) (日) (日)

- Use the AT flag on the orders and trades to measure the AT intensity, both security specific and market average.
- Use the introduction of co-location services (CO-LO) January 2010 – to divide the time period into low and high AT-INTENSITY periods.
- Pick a sample of one month from the period of low and from the high AT-INTENSITY as the LOW-AT and HIGH-AT samples.
- ► The difference between the market quality in the HIGH-AT and LOW-AT samples can be attributed to the rise of AT.
- Control for changes in other things such as macroeconomic conditions.

- Use the AT flag on the orders and trades to measure the AT intensity, both security specific and market average.
- Use the introduction of co-location services (CO-LO) January 2010 – to divide the time period into low and high AT-INTENSITY periods.
- Pick a sample of one month from the period of low and from the high AT-INTENSITY as the LOW-AT and HIGH-AT samples.
- ► The difference between the market quality in the HIGH-AT and LOW-AT samples can be attributed to the rise of AT.
- Control for changes in other things such as macroeconomic conditions.

- Use the AT flag on the orders and trades to measure the AT intensity, both security specific and market average.
- Use the introduction of co-location services (CO-LO) January 2010 – to divide the time period into low and high AT-INTENSITY periods.
- Pick a sample of one month from the period of low and from the high AT-INTENSITY as the LOW-AT and HIGH-AT samples.
- The difference between the market quality in the HIGH-AT and LOW-AT samples can be attributed to the rise of AT.
- Control for changes in other things such as macroeconomic conditions.

- Use the AT flag on the orders and trades to measure the AT intensity, both security specific and market average.
- Use the introduction of co-location services (CO-LO) January 2010 – to divide the time period into low and high AT-INTENSITY periods.
- Pick a sample of one month from the period of low and from the high AT-INTENSITY as the LOW-AT and HIGH-AT samples.
- The difference between the market quality in the HIGH-AT and LOW-AT samples can be attributed to the rise of AT.
- Control for changes in other things such as macroeconomic conditions.

- Use the AT flag on the orders and trades to measure the AT intensity, both security specific and market average.
- Use the introduction of co-location services (CO-LO) January 2010 – to divide the time period into low and high AT-INTENSITY periods.
- Pick a sample of one month from the period of low and from the high AT-INTENSITY as the LOW-AT and HIGH-AT samples.
- The difference between the market quality in the HIGH-AT and LOW-AT samples can be attributed to the rise of AT.
- Control for changes in other things such as macroeconomic conditions.

What we find

 AT-INTENSITY in the market rose significantly after the introduction of co-lo but stabilised with a significant lag.

On average, the intra-day market quality measures

- Improved: transactions costs (spread, impact cost), risk (intraday volatility, volatility of impact cost).
- Worsened: depth (either as value or as number of shares) available for trade, order imbalance.

(日) (日) (日) (日) (日) (日) (日)

What we find

- AT-INTENSITY in the market rose significantly after the introduction of co-lo but stabilised with a significant lag.
- On average, the intra-day market quality measures
 - Improved: transactions costs (spread, impact cost), risk (intraday volatility, volatility of impact cost).
 - Worsened: depth (either as value or as number of shares) available for trade, order imbalance.

(ロ) (同) (三) (三) (三) (○) (○)

Implementation details

Data

- Period:
 - Pre co-lo: Jan '09 to Dec '09
 - Post co-lo: Jul '12 to Aug '13
- Sample of stocks: CNX100 (as in 2012)
- Sample period analysed: (One month sample)
 - LOW-AT PERIOD: Jul 6, 2009 to Aug 8, 2009 (23 trading days)
 - HIGH-AT PERIOD: Jul 6, 2012 to Aug 8, 2012 (25 trading days)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Frequency used: Tick by tick.
- Data Source: NSE, India

AT intensity between 2009-13

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Concentration of AT across stocks

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● の Q @

Market quality measures

- Liquidity
 - 1. Transactions costs
 - 1.1 QSPREAD (in %): (Best Ask Price Best Sell Price) \times 100 / Mid-quote price.
 - 1.2 IC (%): at the transaction size of Rs 25,000.
 - 2. Depth
 - 2.1 TOP1DEPTH (in Rs.): Rupee depth available at the best bid and ask prices.
 - 2.2 TOP5DEPTH (in Rs.): Cumulated Rupee depth available at top five best bid and ask prices.
 - 2.3 DEPTH (# of shares): Average of the outstanding buy side and sell side number of shares.
 - 2.4 |OIB| (in %): Difference in buy and sell side depth as a percentage of the total depth, on average.
- Volatility
 - 1. LRISK: Standard deviation of IC in five-minutes interval.
 - 2. RVOL: Standard deviation of five-minutes returns.
- Efficiency
 - 1. VR: Ratio of ten minutes variance of returns to five minute returns

Market quality measures

- Liquidity
 - 1. Transactions costs
 - 1.1 QSPREAD (in %): (Best Ask Price Best Sell Price) \times 100 / Mid-quote price.
 - 1.2 IC (%): at the transaction size of Rs 25,000.
 - 2. Depth
 - 2.1 TOP1DEPTH (in Rs.): Rupee depth available at the best bid and ask prices.
 - 2.2 TOP5DEPTH (in Rs.): Cumulated Rupee depth available at top five best bid and ask prices.
 - 2.3 DEPTH (# of shares): Average of the outstanding buy side and sell side number of shares.
 - 2.4 |OIB| (in %): Difference in buy and sell side depth as a percentage of the total depth, on average.
- Volatility
 - 1. LRISK: Standard deviation of IC in five-minutes interval.
 - 2. RVOL: Standard deviation of five-minutes returns.
- Efficiency
 - 1. VR: Ratio of ten minutes variance of returns to five minute returns

Market quality measures

- Liquidity
 - 1. Transactions costs
 - 1.1 QSPREAD (in %): (Best Ask Price Best Sell Price) \times 100 / Mid-quote price.
 - 1.2 IC (%): at the transaction size of Rs 25,000.
 - 2. Depth
 - 2.1 TOP1DEPTH (in Rs.): Rupee depth available at the best bid and ask prices.
 - 2.2 TOP5DEPTH (in Rs.): Cumulated Rupee depth available at top five best bid and ask prices.
 - 2.3 DEPTH (# of shares): Average of the outstanding buy side and sell side number of shares.
 - 2.4 |OIB| (in %): Difference in buy and sell side depth as a percentage of the total depth, on average.
- Volatility
 - 1. LRISK: Standard deviation of IC in five-minutes interval.
 - 2. RVOL: Standard deviation of five-minutes returns.
- Efficiency
 - 1. VR: Ratio of ten minutes variance of returns to five minute returns

- Identify an exogenous event that affected AT intensity in the markets: co-location facilities.
- Two approaches:
 - 1. Comparative analysis of average levels of market quality variables in the LOW-AT and HIGH-AT period.
 - Cross sectional analysis using fixed effects model (Model 1):

 $\mathsf{MKT-QUALITY}_{i,t} = \alpha_i + \beta_1 \mathsf{AT-INTENSITY}_{i,t-1} + \beta_2 \mathsf{COLO-DUMMY}_t + \epsilon_{i,t}$

・ロト・日本・日本・日本・日本

where 't' = 1...T indexes of five minute time intervals

 $\mathsf{COLO-DUMMY}_t = \begin{cases} 1 & \text{ if 't'} \in \mathsf{Post co-lo period} \\ 0 & \text{ otherwise} \end{cases}$

- Identify an exogenous event that affected AT intensity in the markets: co-location facilities.
- Two approaches:
 - 1. Comparative analysis of average levels of market quality variables in the LOW-AT and HIGH-AT period.
 - Cross sectional analysis using fixed effects model (Model 1):

 $\mathsf{MKT-QUALITY}_{i,t} = \alpha_i + \beta_1 \mathsf{AT-INTENSITY}_{i,t-1} + \beta_2 \mathsf{COLO-DUMMY}_t + \epsilon_{i,t}$

(ロ) (同) (三) (三) (三) (○) (○)

where 't' = 1...T indexes of five minute time intervals

$$\mathsf{COLO-DUMMY}_t = \begin{cases} 1 & \text{ if } \mathsf{'t'} \in \mathsf{Post co-lo period} \\ 0 & \text{ otherwise} \end{cases}$$

Threats to validity

Sac

How to control for the changes in macroeconomic conditions?

1. Regression based approach:

 $\begin{aligned} \mathsf{MKT-QUALITY}_{i,t} &= \alpha_i + \beta_1 \mathsf{CO-LO-DUMMY}_t + \beta_2 \mathsf{AT-INTENSITY}_{i,t-} \\ &+ \beta_3 \mathsf{NIFTY-VOL}_t + \epsilon_{i,t} \end{aligned}$

where NIFTY-VOL $_{i,t}$ is the variance of five-minute returns on the market index.

- 2. Matched sample approach:
 - Pick dates in the post co-lo period when market volatility matched the levels in the pre co-lo period.

(ロ) (同) (三) (三) (三) (○) (○)

Matched Sample: 41 dates in each period.

How to control for the changes in macroeconomic conditions?

1. Regression based approach:

 $\begin{aligned} \mathsf{MKT-QUALITY}_{i,t} &= \alpha_i + \beta_1 \mathsf{CO-LO-DUMMY}_t + \beta_2 \mathsf{AT-INTENSITY}_{i,t-} \\ &+ \beta_3 \mathsf{NIFTY-VOL}_t + \epsilon_{i,t} \end{aligned}$

where NIFTY-VOL $_{i,t}$ is the variance of five-minute returns on the market index.

- 2. Matched sample approach:
 - Pick dates in the post co-lo period when market volatility matched the levels in the pre co-lo period.

Matched Sample: 41 dates in each period.

Results

Comparing liquidity costs in the HIGH-AT & LOW-AT sample

Depth behavior in the HIGH-AT & LOW-AT period

◆ロ▶★舂▶★≧▶★≧▶ 差 のなぐ

.. and the volatility measures

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへで

Results: Effect of AT on market quality variables

M1 : MKT-QUALITY_{*i*,*t*} = $\alpha_i + \beta_1$ AT-INTENSITY_{*i*,*t*-1} + β_2 CO-LO-DUMMY_{*t*} + $\epsilon_{i,t}$

Panel A: Transactions costs and Rupee depth							
	QSPREAD	IC	TOP1DEPTH	top5depth			
AT-INTENSITY	-0.01+	-0.01+	-0.09+	-0.17+			
	(0.00)	(0.00)	(0.02)	(0.01)			
CO-LO-DUMMY	-0.01+	-0.01+	-0.81+	-0.46+			
	(0.00)	(0.00)	(0.01)	(0.01)			
Obs.	315,115	315,115	315,115	315,115			
R^2	0.10	0.07	0.24	0.15			
Panel B: Depth and Volatility							
	DEPTH	OIB	LRISK	RVOL			
AT-INTENSITY	0.10+	4.54+	-0.001**	-5.15+			
	(0.01)	(0.49)	(0.000)	(1.12)			
CO-LO-DUMMY	0.35^{+}	-30.18 ⁺	-0.01+	-46.40^{+}			
	(0.01)	(0.96)	(0.00)	(1.77)			
R^2	0.18	0.26	0.20	0.26			

Dealing with threats to validity

M1 : MKT-QUALITY_{*i*,*t*} = $\alpha_i + \beta_1$ AT-INTENSITY_{*i*,*t*-1} + β_2 CO-LO-DUMMY_{*t*} + $\epsilon_{i,t}$

 $\begin{array}{l} \mathsf{M4}:\mathsf{MKT}\text{-}\mathsf{QUALITY}_{i,t} = \alpha_i + \beta_1\mathsf{AT}\text{-}\mathsf{INTENSITY}_{i,t-1} + \beta_2\mathsf{CO}\text{-}\mathsf{LO}\text{-}\mathsf{DUMMY}_t \\ + \beta_3\mathsf{NIFTY}\text{-}\mathsf{VOL}_t + \beta_4\mathsf{INTRADAY}\text{-}\mathsf{DUMMY}_t + \beta_5\mathsf{LTP}_{i,t} + \epsilon_{i,t} \end{array}$

	Value of \hat{eta}_1					
	One month sample		Matched sample			
	M1	M4	M1	M4		
QSPREAD	-0.01+	-0.01+	-0.02+	-0.02+		
IC	-0.01+	-0.01+	-0.02+	-0.02+		
TOP1DEPTH	-0.09+	-0.10+	-0.08+	-0.10+		
top5depth	-0.17+	-0.17+	-0.12+	-0.13+		
DEPTH	0.10+	0.12+	-0.04+	0.021		
OIB	4.54+	4.91+	1.45+	2.02+		
RVOL	-5.15 ⁺	-2.56+	-17.23+	-12.44+		
LRISK	-0.001**	-0.00	-0.003+	-0.002+		

Conclusion

- The world has shifted from manual to computer-supported trading in a stunningly short time
- A major new phenomenon that requires analysis
- All the regulators of the world are interested
- Numerous existing papers, but three flaws: (a) Fragmented microstructure (b) Endogenous adoption of AT and (c) Lack of underlying data infrastructure.
- Our research design solves these three problems, and reports on one of the biggest exchanges of the world by order intensity.
- Matching-based strategy that controls for changes in macroeconomic conditions.
- Main result: AT is good for market quality but depth visible goes down.

Thank you

Comments / Questions?

http://www.ifrogs.org/