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The credit risk problems considered

We want to estimate the conditional default probability of any firm as
a function of given global and company specific information.

This over short time periods - a month or a quarter, as well as longer
time horizons.

Analogous to predicting a person’s health (mortality) as a function of
his blood pressure, sugar, cholesterol, pollution, income, taxes
(un)paid, etc.

We model in discrete time and assume conditional probabilities have a
popular default intensity type or logit type form
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Big picture - contributions

The literature posits a parametric form for conditional default
probabilities. Solves for parameters by maximising the likelihood
function.

Computationally intensive, solution has a black box flavour - drivers
of the parameters not clear.

We observe, in some popular settings, that since these probabilities
are small, and co-variates can be transformed to be Gaussian, the
MLE has a simple closed form approximation
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These are almost as good as MLE when the model is correctly
specified - Performance slightly worsens for large number of firms
(5,000 plus), large default probabilities (5%)

Equally good or equally bad for mis-specified models, including on
empirical data.

We characterize the performance of the proposed approximate MLE
as well as MLE in an asymptotic regime - probabilities decrease to
zero, number of firms and number of time periods increase to infinity

Some numerical/empirical support
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The credit risk problems maybe not considered ...

We analyze the portfolio credit risk problem and develop an
asymptotic regime where

we conduct large deviations tail analysis of large losses

Develop fast simulation techniques for computing tail risk measures

Both in calibration as well as in portfolio analysis, we include
contagion effects in the model in a meaningful way.
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Review and models considered
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Popular reduced form intensity based models

For each firm i , default explaining covariates such as prevailing
interest rates, GDP, distance to default, cash over total assets,
modelled as a continuous Markov process, example,

dXi ,t = Ai (θi − Xi ,t)dt + ΣidWi ,t

for 0 ≤ t ≤ T .

Firm i has a doubly stochastic default intensity process

λi (t) = Λi (β,Xi ,t)

where β is the set of parameters to be estimated.

Conditioned on the covariates, default is an arrival from a
non-homogeneous Poisson process.
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Conditional probability under discretization

P( no default by t + 1| no default by time t) = Ete
−

∫ t+1
t λi (s)ds

If we assume that over time period [t, t + 1)

λi (s) = exp(βᵀXi ,t − α)

then

P( default by t+1| no default by time t) = 1−exp(− exp(βᵀXi ,t−α))

Juneja Portfolio Risk 8 / 55



Conditional probability under discretization

P( no default by t + 1| no default by time t) = Ete
−

∫ t+1
t λi (s)ds

If we assume that over time period [t, t + 1)

λi (s) = exp(βᵀXi ,t − α)

then

P( default by t+1| no default by time t) = 1−exp(− exp(βᵀXi ,t−α))

Juneja Portfolio Risk 8 / 55



Discrete Logit models

Covariates affecting Firm i follow a stationary process {Xi ,t}

Conditional default probability at period t to default in [t, t + 1)

pt(Xi ,t) =
exp(βTXi ,t − α)

1 + exp(βTXi ,t − α)
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Model and Maximum likelihood
estimation
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We consider a discrete time model

Covariates - Autoregressive process

Xi ,t+1 = AXi ,t + Ẽi ,t+1

Conditional default probability at period t to default within [t, t + 1)

p(Xi ,t) = 1− exp
(
− exp(βTXi ,t − α)

)
or

p(Xi ,t) =
exp(βTXi ,t − α)

1 + exp(βTXi ,t − α)
,

Parameters β, α need to be estimated from data. Duffie et al 2006,
Duan et al 2007, Chava and Jarrow 2004, Duan, Sun Wang 2012, Shumway
2002.
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Maximum likelihood method to estimate parameters

Default data

(xi ,t , di ,t) for t = 1, , 2, . . . ,T , i = 1, . . . ,m,

where di ,t = 1 if company i defaults in [t, t + 1) and zero otherwise.

Likelihood L of seeing the data

L =
∏
i ,t

p(xi ,t)
di,t (1− p(xi ,t))1−di,t

This is optimized numerically to find β and α.

Computationally intensive; black box.
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MLE: Default intensity model

p(xi ,t) = 1− exp(−eβᵀxi,t−α).

Setting the partial derivatives w.r.t. (β, α) to zero,

∑
i ,t

xi ,te
βᵀxi,t−α

1− exp(−eβᵀxi,t−α)
di ,t =

∑
i ,t

xi ,te
βᵀxi,t−α

and ∑
i ,t

eβ
ᵀxi,t−α

1− exp(−eβᵀxi,t−α)
di ,t =

∑
i ,t

eβ
ᵀxi,t−α.
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MLE: Logit model

p(xi ,t) =
exp(βᵀxi ,t − α)

1 + exp(βᵀxi ,t − α)
.

Setting the partial derivatives to zero:∑
i ,t

xi ,tdi ,t =
∑
i ,t

xi ,t
exp(βᵀxi ,t − α)

1 + exp(βᵀxi ,t − α)
.

and ∑
i ,t

di ,t =
∑
i ,t

exp(βᵀxi ,t − α)

1 + exp(βᵀxi ,t − α)
.
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Key insight

Re-express
1

# i , t

∑
i ,t

di ,t = E (exp(βᵀXi ,t − α))

+

 1

# i , t

∑
i ,t

exp(βᵀxi ,t − α)

1 + exp(βᵀxi ,t − α)
− E (exp(βᵀXi ,t − α))

 .

and

1

# i , t

∑
i ,t

xi ,tdi ,t = EXi ,t (exp(βᵀXi ,t − α))

+

 1

# i , t

∑
i ,t

xi ,t
exp(βᵀxi ,t − α)

1 + exp(βᵀxi ,t − α)
− EXi ,t (exp(βᵀXi ,t − α))

 .

Juneja Portfolio Risk 15 / 55



Key insight

Re-express
1

# i , t

∑
i ,t

di ,t = E (exp(βᵀXi ,t − α))

+

 1

# i , t

∑
i ,t

exp(βᵀxi ,t − α)

1 + exp(βᵀxi ,t − α)
− E (exp(βᵀXi ,t − α))

 .

and

1

# i , t

∑
i ,t

xi ,tdi ,t = EXi ,t (exp(βᵀXi ,t − α))

+

 1

# i , t

∑
i ,t

xi ,t
exp(βᵀxi ,t − α)

1 + exp(βᵀxi ,t − α)
− EXi ,t (exp(βᵀXi ,t − α))

 .

Juneja Portfolio Risk 15 / 55



When X is Gaussian:

E [exp(βᵀX )] = exp(
1

2
βᵀΣβ) and E [X exp(βᵀX )] = Σβ exp(

1

2
βᵀΣβ).

This suggests that we set the estimator to dominant term

β̂ = Σ−1i

(∑
i ,t xi ,tdi ,t∑
i ,t di ,t

)
.

α̂ is chosen to match the observed default probability.
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How good is the estimator
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Analysis of estimator quality in asymptotic regime

We model conditional default probabilities as

pγ(Xi ,t) = exp(βTXi ,t − α(γ))(1 + oγ(1))

where α(γ) is of order log(1/γ), {Xt} is a vector autoregressive

process.

Conditional probabilities of order γ ( ≈ 10−3)

Number of companies is of order 1
γδ

for δ > 0

Number of time periods of provided data is 1
γζ

for ζ ∈ (0, 1).
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Our estimator in this regime

β̂ = Σ−1X ,X

(∑
i ,t Xi ,tDi ,t∑

i ,t Di ,t

)
.

Recall that {Xt} captures the underlying covariates. Di ,t are default
indicators.

This converges to β as γ → 0.
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Mean square error analysis: Proposed estimator

Theorem: The mean square error

||β̂ − β||2 = Θ(γδ+ζ−1) + Θ(γζ).

δ + ζ < 1: No defaults asymptotically

δ < 1: Increasing δ helps the estimator. More firms in dataset improve the
estimator

δ > 1: increasing δ no longer matters. Insensitive to increase in the number
of firms
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Mean square error analysis for MLE

Theorem: The mean square error equals

Θ(γδ+ζ−1)

Both the estimators can be shown to satisfy a central limit theorem. Maybe
useful for constructing confidence intervals

Juneja Portfolio Risk 21 / 55



Mean square error analysis for MLE

Theorem: The mean square error equals

Θ(γδ+ζ−1)

Both the estimators can be shown to satisfy a central limit theorem. Maybe
useful for constructing confidence intervals

Juneja Portfolio Risk 21 / 55



Model misspecification: An illustration

Model generating defaults has two Gaussian factors common to all firms:

exp(β1Y1,t + β2Y2,t − α(γ))

1 + exp(β1Y1,t + β2Y2,t − α(γ))
,

Y1,t and Y2,t are assumed to have zero mean, variance 1 and correlation ρ

Only the first factor with time series (Y1,t : 1 ≤ t ≤ T (γ)) is assumed to be
relevant by modeller.

Both estimators asymptotically converge to

β̂1 = β1 + ρβ2

and

α̂ = α(γ)− β2
2(1− ρ2)

2
.
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Simulation Experiments
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Comparison of RMSE for default probability 1% per
annum, model correctly specified

Time in months No. of firms RMSE(βprop) RMSE(βML)

200 1000 0.1280 0.1248
200 3000 0.0787 0.0707
200 5000 0.0685 0.0574
200 7000 0.0574 0.0435
200 10000 0.0547 0.0374

100 2000 0.1232 0.1157
300 2000 0.0774 0.0714
500 2000 0.0608 0.0547
700 2000 0.0565 0.0509

Table: True Parameters: (α = 7.5, β1 = −0.2, β2 = 0.5, β3 = 0.5). RMSE of the proposed
estimator is only slightly larger than that of MLE except when the no. of companies is large.
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Comparison of RMSE for default probability 1% per
annum, missing covariate with small and large coefficient

β3 No. of firms RMSE(βprop) RMSE(βML)

0.5 1000 0.1403 0.1392
0.5 3000 0.0871 0.0842
0.5 5000 0.0741 0.0721
0.5 7000 0.0754 0.0707

2 1000 0.3109 0.3231
2 3000 0.2958 0.3041
2 5000 0.3046 0.3135
2 7000 0.3014 0.3072

Table: True Parameters: (α = 7.5, β1 = −0.2, β2 = 0.5), β3. Time period 200. Both the
proposed estimator and MLE estimate (α, β1, β2) only. The RMSE of the two methods is
nearly identical. It worsens as value of β3 increases.
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Empirical Analysis
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Sample Data Characteristics (From Risk Management
Institute, NUS)

1 Number of Companies: 2,000

2 Time Periods:251

3 Defaults:168

4 Default Probability per year: 1.12%

5 Number of Variables Available: 8
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Description of Variables

Macroeconomic Variables

1 IndexReturn: trailing 1-year return on the S&P500 index

2 Treasury rate: 3-month US Treasury bill rate

Firm-Specific Variables

1 DTD: firms distance-to-default

2 CASH/TA: ratio of the sum of cash and short-term investments to
the total assets

3 NI/TA: ratio of net income to the total assets

4 SIZE: log of the ratio of firms market equity value to the average
market equity value of the S&P500 firm

5 M/B: market-to-book asset ratio

6 SIGMA: 1-year idiosyncratic volatility
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Assumption of Normality/Boundedness

Figure: Frequency Plots of Variables without Transformation
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Assumption of Normality/Boundedness

Figure: Frequency Plots of Variables after Transformation
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Calibration Betas

Table: Combined Beta Table

Decile Our Calibration Duffie’s MLE Logit

Constant -9.251 -6.739 -9.344
log DTD level -1.330 -0.425 -1.837
sq DTDtrend -0.199 0.320 -1.267
CASHTAtrend -0.035 0.006 -0.045

NITAtrend -0.417 -0.108 -0.060
sq SIZEtrend -1.477 -0.615 -0.565
IndexReturn -0.342 -0.089 -0.218
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Calibration Results

Table: Combined Accuracy Table

Decile Our Calibration Duffie’s MLE Logit

1 0.895 0.842 0.763
2 0.974 0.947 0.921
3 0.974 0.974 0.947
4 1 0.974 0.947
5 1 0.974 0.947
6 1 0.974 0.974
7 1 0.974 1
8 1 1 1
9 1 1 1
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Calibration Betas with Contagion

Table: Combined Beta Table with Contagion

Variable Our Calibration Duffie’s MLE Logit

Constant -9.806 -6.811 -9.145
log DTD level -1.281 -0.322 -1.587
sq DTDtrend -0.174 0.072 -1.235
CASHTAtrend -0.033 0.181 -0.042

NITAtrend -0.410 0.223 -0.061
sq SIZEtrend -1.462 -0.755 -0.582
IndexReturn 0.021 0.007 -0.198
Contagion 1.117 0.194 0.046
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Calibration Results with Contagion

Table: Combined Accuracy Table with Contagion

Decile Our Calibration Duffie’s MLE Logit

1 0.921 0.868 0.763
2 0.974 0.947 0.921
3 0.974 0.974 0.947
4 1 1 0.947
5 1 1 0.974
6 1 1 0.974
7 1 1 1
8 1 1 1
9 1 1 1
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Table: Computer Generated Data Coefficient Results

Underlying Logit Betas Our Betas Duffie Betas

Constant -7.600 -7.490 -7.566
CVar1 0.225 0.198 0.224
CVar2 0.549 0.536 0.561
CVar3 -1.417 -1.376 -1.408
MVar1 0.500 0.455 0.517
MVar2 0.700 0.687 0.664
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Portfolio Credit Risk: Tail Analysis
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Our portfolio framework

Consider a portfolio with n borrowers.

For each obligor i , the conditional default probability in period
[t, t + 1) has the form

pi ,t = F (−αi + βTXi ,t)

where F is a strictly increasing distribution function.

The covariates follow a vector autoregressive process

Xi ,t+1 = AXi ,t + Ẽi ,t+1
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Juneja Portfolio Risk 37 / 55



Let Di ,t denote the event that obligor i defaults at time t. Then, loss
suffered equals ei . This may be random.

One illustrative performance measure of interest may be

P(
n∑

i=1

ei I (Di ,t1) ≥ nat1 ,
n∑

i=1

ei I (Di ,t2) ≥ nat2)

That is, large losses observed jointly in two time periods t1 and t2.
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Monte Carlo methodology to compute large loss
probabilities

Start with the value Xi ,0 as well as pi ,0 for each obligor. Check how
many default in period [0, 1).

Increment the factors generating samples of Ẽ1,

Xi ,1 = AXi ,0 + Ẽi ,1

Generate samples of Yi ,1 and compute the conditional probabilities

pi ,1 = F (−αi + βTXi ,1)

Generate defaults at time 1. Compute the loss amount at this time.

Carry on till time t2.
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Generate samples of Yi ,1 and compute the conditional probabilities

pi ,1 = F (−αi + βTXi ,1)

Generate defaults at time 1. Compute the loss amount at this time.

Carry on till time t2.

Juneja Portfolio Risk 39 / 55



Monte Carlo methodology ...

Compute losses at time t1 and at time t2. Get a sample of

I (
n∑

i=1

ei I (Di ,t1) ≥ nat1 ,
n∑

i=1

ei I (Di ,t2) ≥ nat2)

Average of iid samples gives an unbiased probability estimator.

Problem is intractable to analysis and due to rare events it is
computationally prohibitive.
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Some related literature

Dembo, Deuschel, Duffie (2004) - single period, single factor large
deviations.

Glasserman and Li (2005), Glasserman, Kang, Shahabuddin (07, 08).
Single period, Gaussian Copula, large deviations, fast simulation.

Bassamboo, Juneja, Zeevi (2008) T-Copula single period large
deviations, fast simulation.

Giesecke, Spiliopoulos, R. Sowers, and J. Sirignano (2015).
Continuous time model, analysis relatively complex.

Duan, Sun, Wang (2012). Discrete time multi period model. No large
deviations analysis.
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Tail Analysis of Large Losses
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Embedding the portfolio credit risk problem in asymptotic
regime

Consider a portfolio with n obligors. We analyze this portfolio as
n→∞.

For each obligor i , the conditional default probability in period
[t, t + 1) has the form

p
(n)
i ,t = F (−mnα + m̃nβ

TXt + m̃nη
TYi ,t)

The common factors again follow a vector autoregressive process
independent of n,

Xt+1 = AXt + Ẽt+1

Juneja Portfolio Risk 43 / 55



Embedding the portfolio credit risk problem in asymptotic
regime

Consider a portfolio with n obligors. We analyze this portfolio as
n→∞.

For each obligor i , the conditional default probability in period
[t, t + 1) has the form

p
(n)
i ,t = F (−mnα + m̃nβ

TXt + m̃nη
TYi ,t)

The common factors again follow a vector autoregressive process
independent of n,

Xt+1 = AXt + Ẽt+1
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Illustrative large deviations result

Theorem

When, mn
m̃n
→∞, and lim infn m̃n > 0, under mild conditions,

lim
n→∞

1

n
logP(

n∑
i=1

ei I (Di ,t) ≥ na) = −q(t),

where q(t) equals
α2
1∑t

k=1

∑d
p=1 h

2
t−k,p

.

Note that it strictly reduces with t.

Similar results when m̃n → 0.
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Incorporating contagion in tail effects

Suppose that ∆t denotes the random amount of the weighted
defaults observed at time t.

For each obligor i , the conditional default probability in period
[t, t + 1) has the form

p
(n)
i ,t = F (−α + m̃n(β + c1∆t)

TXt + m̃nc2∆tZt)

where Zt is an independent Gaussian random variable.

Large ∆t increases the sensitivity of default probability to global
factors.

Large ∆t impacts the negative sentiment Zt .
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Incorporating contagion in tail effects

When m̃n → 0 and n1/2m̃n →∞, the above scaling allows both β
and c to show up in the large deviations tail exponent of large loss
probabilities.

When m̃n = n−1/2, idiosyncratic defaults also contribute to the large
deviations rate.
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Fast Simulation of Large Losses
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Illustrative rare event simulation problem

Consider the problem of estimating probability of eighty or more
heads in hundred tosses of a fair coin. (5.58× 10−10).

Estimator from average of n independent samples

1

n

n∑
i=1

Ii (X1 + X2 + · · ·+ X100 ≥ 80).

On average 1.8× 109 samples needed to observe a successful sample

2.75× 1012 trials needed to get 95% confidence interval of width 5%
of the true value.
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Importance sampling to the rescue

Generate these samples under a new distribution such that Xi ’s
independently equal 1 with probability p.

Unbias the result using the ‘likelihood ratio’

1

n

n∑
i=1

Ii (X1 + · · ·+ X100 ≥ 80)
(1/2)

∑100
i=1 Xi (1/2)100−

∑100
i=1 Xi

p
∑100

i=1 Xi (1− p)100−
∑100

i=1 Xi

.

When p = 0.8, 7,932 samples needed for 5% relative accuracy

When p = 0.99, 3.69× 1022 samples needed for 5% relative accuracy.
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Importance sampling

Consider estimating the rare event probability P(A).

P(A) = EI (A) =

∫
x∈A

f (x)dx =

∫
x∈A

f (x)

f ∗(x)
f ∗(x)dx = E ∗[LI (A)]

where L(x) = f (x)
f ∗(x) is called the likelihood ratio.

Estimation strategy: Generate independent samples of L ∗ I (A) using
f ∗. Their average is an unbiased and consistent estimator of P(A).
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Challenge is to find f ∗ that minimizes the variance or the second
moment of the estimator L ∗ I (A).

E ∗L2I (A) =

∫
x∈A

(
f (x)

f ∗(x)

)2

f ∗(x)dx =

∫
x∈A

(
f (x)2

f ∗(x)

)
dx

Therefore, whenever f (x) is large, f ∗(x) should be large - Should
emphasize most likely paths.

f ∗(x) should never be much smaller than f (x) along A.
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Issues with importance Sampling

{Iso large deviations rt fn curve} 

Process 
mean  

a* Most  
likely pt  

H (a*) 

a2
 

Rare 
set 

H (a2) 

First illustrated by Sadowsky and Bucklew (1991).
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In our problem

For loss probabilities of order 1 in a 1000, one can expect 100-150
times speed up using an implementable asymptotically optimal
importance sampling distribution.
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Comments and Conclusions

Using Taylor expansion, same approximations for non-Gaussian light
tailed variables, if the corresponding β are small.

Developed closed form expressions for approximations to MLE.

Conducted asymptotic analysis to prove effectiveness of proposed
estimators and empirically verified strong performance relative to
existing methods.

If the underlying model is wrong (the only truth in this talk so far),
the exact method and the approximate one are equally bad!

Developed an asymptotic framework and conducted large deviations
methodology for joint distribution of large losses for portfolio credit
risk.

Proposed provably efficient fast simulation techniques for the
portfolio model.
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