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The credit risk problems considered

o We want to estimate the conditional default probability of any firm as
a function of given global and company specific information.
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The credit risk problems considered

o We want to estimate the conditional default probability of any firm as
a function of given global and company specific information.

@ This over short time periods - a month or a quarter, as well as longer
time horizons.

@ Analogous to predicting a person’s health (mortality) as a function of
his blood pressure, sugar, cholesterol, pollution, income, taxes
(un)paid, etc.

@ We model in discrete time and assume conditional probabilities have a
popular default intensity type or logit type form
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Big picture - contributions

@ The literature posits a parametric form for conditional default
probabilities. Solves for parameters by maximising the likelihood
function.
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Big picture - contributions

@ The literature posits a parametric form for conditional default
probabilities. Solves for parameters by maximising the likelihood
function.

o Computationally intensive, solution has a black box flavour - drivers
of the parameters not clear.

@ We observe, in some popular settings, that since these probabilities
are small, and co-variates can be transformed to be Gaussian, the
MLE has a simple closed form approximation
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@ These are almost as good as MLE when the model is correctly
specified - Performance slightly worsens for large number of firms
(5,000 plus), large default probabilities (5%)
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@ These are almost as good as MLE when the model is correctly
specified - Performance slightly worsens for large number of firms
(5,000 plus), large default probabilities (5%)

@ Equally good or equally bad for mis-specified models, including on
empirical data.

@ We characterize the performance of the proposed approximate MLE
as well as MLE in an asymptotic regime - probabilities decrease to
zero, number of firms and number of time periods increase to infinity

@ Some numerical /empirical support
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The credit risk problems considered ...

@ We analyze the portfolio credit risk problem and develop an
asymptotic regime where
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The credit risk problems considered ...

@ We analyze the portfolio credit risk problem and develop an
asymptotic regime where

e we conduct large deviations tail analysis of large losses

e Develop fast simulation techniques for computing tail risk measures

@ Both in calibration as well as in portfolio analysis, we include
contagion effects in the model in a meaningful way.
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Review and models considered




Popular reduced form intensity based models

@ For each firm i, default explaining covariates such as prevailing
interest rates, GDP, distance to default, cash over total assets,
modelled as a continuous Markov process, example,

dX,'7t — A,’(H,' - X,'7t)dt + Z,‘dVV,"t

for0<t<T.
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Popular reduced form intensity based models

@ For each firm i, default explaining covariates such as prevailing
interest rates, GDP, distance to default, cash over total assets,
modelled as a continuous Markov process, example,

dXi+ = Ai(0i — Xi¢)dt + ;dW, ;

for0<t<T.

@ Firm i/ has a doubly stochastic default intensity process
Ai(t) = Ni(B, Xit)

where (3 is the set of parameters to be estimated.

o Conditioned on the covariates, default is an arrival from a
non-homogeneous Poisson process.
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Conditional probability under discretization

P( no default by t + 1| no default by time t) = E;e™ S5 \i(s)ds
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Conditional probability under discretization

P( no default by t + 1| no default by time t) = E;e™ S5 \i(s)ds

o If we assume that over time period [t, t + 1)
Ai(s) = exp(BT X+ — )
then

P( default by t+1| no default by time t) = 1—exp(—exp(5TX; :—))
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Discrete Logit models

e Covariates affecting Firm i follow a stationary process {X; ; }
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Discrete Logit models

e Covariates affecting Firm i follow a stationary process {X; ; }

e Conditional default probability at period t to default in [t,t + 1)

_ exp(ﬁTX,-J —a)
1+ eXp(BTXi,t —a)

Pt(Xi,t)
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Model and Maximum likelihood
estimation




We consider a discrete time model

o Covariates - Autoregressive process

Xit+1 = AXi ¢+ Ej i1
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We consider a discrete time model

o Covariates - Autoregressive process

Xit+1 = AXi ¢+ Ej i1

e Conditional default probability at period t to default within [t,t + 1)

p(Xi.e) = 1 —exp (—exp(87 X — 1))
or

exp(BTX,-J —a)

Xi — )
P(Xie) 1+exp(BTXit — )

@ Parameters 3, o need to be estimated from data. Duffie et al 2006,
Duan et al 2007, Chava and Jarrow 2004, Duan, Sun Wang 2012, Shumway
2002.
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Maximum likelihood method to estimate parameters

@ Default data
(xit,dig) fort=1,,2,...,T,i=1,...,m,

where d; + = 1 if company i defaults in [t, t + 1) and zero otherwise.
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Maximum likelihood method to estimate parameters

@ Default data
(xit,dig) fort=1,,2,...,T,i=1,...,m,

where d; + = 1 if company i defaults in [t, t + 1) and zero otherwise.

@ Likelihood L of seeing the data

£ =TT plxia) (1 = plo )%

it

@ This is optimized numerically to find 5 and «.

o Computationally intensive; black box.
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MLE: Default intensity model

p(xie) =1— exp(—eﬂTXi.,t*a)'

@ Setting the partial derivatives w.r.t. (3, «) to zero,

Ty
Xileﬂ it BT i —a
Z 1— eXp( BTX: t— a I’ ZX’ t€
it

and
eBTXi t— Q&

’ di: = efTie—a,
Z 1 — exp(—efTxii—a) "f ’Z;

1t
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MLE: Logit model

°
exp(BTxi: — «
P(Xi,t) = ( : ) .
1+ exp(BTxi+ — )
Setting the partial derivatives to zero:
exp(BTx;+ — )
X tdit = X; ’ .
and

exp(BTxir — @)
di+ = . .
I_Zt ot Z 1+ exp(BTxi+ — )

it
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Key insight

@ Re-express
1

4t

> die = E(exp(8 X — )

it

1 eXp(ﬁTX,'7t — Oé) o
# it Z 1+ exp(BTxit — @) — E(exp(87 Xt — @)

it
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Key insight

@ Re-express

1
ey Z di+ = E (exp(BTXi + — @)
Pt

1 exp(BTx;+ — ) o

and

g tZXftdff—EMexp(ﬁ X, — )

exp(BTx; ¢ — )
' ’ — EX; ™Xit—«a
# it Z;X 1+ exp(BTxie — a) « (exp(BTXi e — a))
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@ When X is Gaussian:

E lexp(57X)] = exp(5 07Z) and £ [X exp(57X)] = X expl(5 7).
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@ When X is Gaussian:

1 1
Efexp(87X)] = exp(55T25) and E [Xexp(BTX)] = 25 exp( fT25).
@ This suggests that we set the estimator to dominant term

B _ Z_l Zi,t Xi.,tdi,t
I Zi,t di .

& is chosen to match the observed default probability.
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How good is the estimator




Analysis of estimator quality in asymptotic regime

@ We model conditional default probabilities as

py(Xie) = exp(B7 Xie — a(7))(1 + 04(1))

where a(7) is of order log(1/7), {X:} is a vector autoregressive

process.
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Analysis of estimator quality in asymptotic regime

@ We model conditional default probabilities as

py(Xie) = exp(B7 Xie — a(7))(1 + 04(1))

where a(7) is of order log(1/7), {X:} is a vector autoregressive

process.

e Conditional probabilities of order v ( =~ 10~ 3)

@ Number of companies is of order % for >0

@ Number of time periods of provided data is 7% for ¢ € (0,1).
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@ Our estimator in this regime
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@ Our estimator in this regime

foy 2_ie Xit Dit
X Zi,t D

@ Recall that {X;} captures the underlying covariates. D; are default
indicators.
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@ Our estimator in this regime

foy 2_ie Xit Dit
X Zi,t D

@ Recall that {X;} captures the underlying covariates. D; are default
indicators.

@ This converges to 3 as v — 0.
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Mean square error analysis: Proposed estimator

@ Theorem: The mean square error

1B = Bl =0(y° 1) + 0(7%).
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Mean square error analysis: Proposed estimator

Theorem: The mean square error

1B = Bl =0(y° 1) + 0(7%).

0 + ¢ < 1: No defaults asymptotically

@ § < 1: Increasing ¢ helps the estimator. More firms in dataset improve the
estimator

@ 0 > 1: increasing J no longer matters. Insensitive to increase in the number
of firms
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Mean square error analysis for MLE

@ Theorem: The mean square error equals

@(,y6+<—1)
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Mean square error analysis for MLE

@ Theorem: The mean square error equals

@(’Y(H_C_l)

@ Both the estimators can be shown to satisfy a central limit theorem. Maybe
useful for constructing confidence intervals
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Model misspecification: An illustration

@ Model generating defaults has two Gaussian factors common to all firms:

exp(f1 Y1t + B2 Y2 — (7))
1+exp(f1Yie+ P2Yor — CV(’Y))’

Y1,: and Y5 are assumed to have zero mean, variance 1 and correlation p
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@ Only the first factor with time series (Y1,::1 <t < T(y)) is assumed to be
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Model misspecification: An illustration

@ Model generating defaults has two Gaussian factors common to all firms:

exp(f1 Y1t + B2 Y2 — (7))
1+exp(f1Yie+ P2Yor — CV(’Y))’

Y1,: and Y5 are assumed to have zero mean, variance 1 and correlation p

@ Only the first factor with time series (Y1,::1 <t < T(y)) is assumed to be
relevant by modeller.

@ Both estimators asymptotically converge to

Br = b1+ pba
and

201 _ 2
a=a(y) - M
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Simulation Experiments




Comparison of RMSE for default probability 1% per
annum, model correctly specified

Time in months  No. of firms  RMSE(Bu0p)  RMSE(Bume)
200 1000 0.1280 0.1248
200 3000 0.0787 0.0707
200 5000 0.0685 0.0574
200 7000 0.0574 0.0435
200 10000 0.0547 0.0374
100 2000 0.1232 0.1157
300 2000 0.0774 0.0714
500 2000 0.0608 0.0547
700 2000 0.0565 0.0509

True Parameters: (o =7.5,81 = —0.2, 8, = 0.5, 83 = 0.5). RMSE of the proposed
estimator is only slightly larger than that of MLE except when the no. of companies is large.
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Comparison of RMSE for default probability 1% per
annum, missing covariate with small and large coefficient

B3 No. of firms  RMSE(Bpop)  RMSE(Bmi)

0.5 1000 0.1403 0.1392
0.5 3000 0.0871 0.0842
0.5 5000 0.0741 0.0721
0.5 7000 0.0754 0.0707
2 1000 0.3109 0.3231
2 3000 0.2958 0.3041
2 5000 0.3046 0.3135
2 7000 0.3014 0.3072

True Parameters: (= 7.5, 81 = —0.2, 8> = 0.5), B3. Time period 200. Both the
proposed estimator and MLE estimate («, 31, 82) only. The RMSE of the two methods is
nearly identical. It worsens as value of (3 increases.
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Empirical Analysis




Sample Data Characteristics (From Risk Management

Institute, NUS)

@ Number of Companies: 2,000

@ Time Periods:251

© Defaults:168

@ Default Probability per year: 1.12%
© Number of Variables Available: 8

Juneja Portfolio Risk 27 / 55



Description of Variables

Macroeconomic Variables
@ IndexReturn: trailing 1-year return on the S&P500 index
@ Treasury rate: 3-month US Treasury bill rate
Firm-Specific Variables
@ DTD: firms distance-to-default

@ CASH/TA: ratio of the sum of cash and short-term investments to
the total assets

© NI/TA: ratio of net income to the total assets

@ SIZE: log of the ratio of firms market equity value to the average
market equity value of the S&P500 firm

@ M/B: market-to-book asset ratio
O SIGMA: 1-year idiosyncratic volatility
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Assumption of Normality/Boundedness

Figure: Frequency Plots of Variables without Transformation
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Assumption of Normality/Boundedness

Figure: Frequency Plots of Variables after Transformation
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Calibration Betas

Table: Combined Beta Table

Decile Our Calibration  Duffie’s MLE Logit
Constant -9.251 -6.739 -9.344
log_DTD_level -1.330 -0.425 -1.837
sq_DTDtrend -0.199 0.320 -1.267
CASHTAtrend -0.035 0.006 -0.045
NITAtrend -0.417 -0.108 -0.060
sq_SIZEtrend -1.477 -0.615 -0.565
IndexReturn -0.342 -0.089 -0.218
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Calibration Results

Table: Combined Accuracy Table

Decile ~ Our Calibration  Duffie's MLE  Logit

1 0.895 0.842 0.763
2 0.974 0.947 0.921
3 0.974 0.974 0.947
4 1 0.974 0.947
5 1 0.974 0.947
6 1 0.974 0.974
7 1 0.974 1
8 1 1 1
9 1 1 1
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Calibration Betas with Contagion

Table: Combined Beta Table with Contagion

Variable Our Calibration  Duffie’s MLE Logit
Constant -9.806 -6.811 -0.145
log_DTD_level -1.281 -0.322 -1.587
sq_DTDtrend -0.174 0.072 -1.235
CASHTAtrend -0.033 0.181 -0.042
NITAtrend -0.410 0.223 -0.061
sq_SIZEtrend -1.462 -0.755 -0.582
IndexReturn 0.021 0.007 -0.198
Contagion 1.117 0.194 0.046
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Calibration Results with Contagion

Table: Combined Accuracy Table with Contagion

Decile  Our Calibration  Duffie's MLE  Logit

1 0.921 0.868 0.763
2 0.974 0.947 0.921
3 0.974 0.974 0.947
4 1 1 0.947
5 1 1 0.974
6 1 1 0.974
7 1 1 1
8 1 1 1
9 1 1 1
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Table: Computer Generated Data Coefficient Results

Underlying Logit Betas  Our Betas  Duffie Betas

Constant -7.600 -7.490 -7.566
CVarl 0.225 0.198 0.224
CVar2 0.549 0.536 0.561
CVar3 -1.417 -1.376 -1.408
MVarl 0.500 0.455 0.517
MVar2 0.700 0.687 0.664
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Portfolio Credit Risk: Tail Analysis




Our portfolio framework

o Consider a portfolio with n borrowers.
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Our portfolio framework

o Consider a portfolio with n borrowers.

@ For each obligor i, the conditional default probability in period
[t,t+ 1) has the form

pit=F(—a;+ 8" Xi:)

where F is a strictly increasing distribution function.

@ The covariates follow a vector autoregressive process

Xit+1 = AXi¢ + I~Ei,t+1
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o Let D;; denote the event that obligor i defaults at time t. Then, loss
suffered equals e;. This may be random.
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o Let D;; denote the event that obligor i defaults at time t. Then, loss
suffered equals e;. This may be random.

@ One illustrative performance measure of interest may be

n
P(Zell( ity >nat17zel It2 >nat2)
i=1

That is, large losses observed jointly in two time periods t; and to.
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Monte Carlo methodology to compute large loss

probabilities

e Start with the value X; g as well as p; o for each obligor. Check how
many default in period [0, 1).
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Monte Carlo methodology to compute large loss

probabilities

Start with the value X; g as well as p; o for each obligor. Check how
many default in period [0, 1).

Increment the factors generating samples of Ej,

Xi1=AXio+Ei;

Generate samples of Y; 1 and compute the conditional probabilities

pi1=F(—a;+ BT X;1)

Generate defaults at time 1. Compute the loss amount at this time.

Carry on till time to.
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Monte Carlo methodology ...

@ Compute losses at time t; and at time t,. Get a sample of

n
10> eil(Diy >nat1,Ze, Di,) > nat,)
i=1
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Monte Carlo methodology ...
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n
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Monte Carlo methodology ...

@ Compute losses at time t; and at time t,. Get a sample of

n
10> eil(Diy >nar1,ze, Di,) > nat,)
i=1

@ Average of iid samples gives an unbiased probability estimator.

@ Problem is intractable to analysis and due to rare events it is
computationally prohibitive.
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Some related literature

e Dembo, Deuschel, Duffie (2004) - single period, single factor large
deviations.

@ Glasserman and Li (2005), Glasserman, Kang, Shahabuddin (07, 08).
Single period, Gaussian Copula, large deviations, fast simulation.

@ Bassamboo, Juneja, Zeevi (2008) T-Copula single period large
deviations, fast simulation.

o Giesecke, Spiliopoulos, R. Sowers, and J. Sirignano (2015).
Continuous time model, analysis relatively complex.

@ Duan, Sun, Wang (2012). Discrete time multi period model. No large
deviations analysis.
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Tail Analysis of Large Losses




Embedding the portfolio credit risk problem in asymptotic

regime

o Consider a portfolio with n obligors. We analyze this portfolio as
n— oo.
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Embedding the portfolio credit risk problem in asymptotic

regime

o Consider a portfolio with n obligors. We analyze this portfolio as
n— oo.

@ For each obligor i, the conditional default probability in period
[t,t + 1) has the form

Pl(,rt") = F(=mya + ’ﬁnBTXt + ﬁﬂ'nnTYi,f)

@ The common factors again follow a vector autoregressive process
independent of n,
Xip1 = AX: + B
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lllustrative large deviations result

When, % — o0, and liminf, m, > 0, under mild conditions,

n—oo N

1 n
lim = log P(Z eil(Dit) > na) = —q(t),
i=1

where q(t) equals

2
a7

t d 2 :
Zk:l Zp:l ht—k,p
Note that it strictly reduces with t.

Juneja Portfolio Risk 44 / 55



lllustrative large deviations result

When, % — o0, and liminf, m, > 0, under mild conditions,

n—oo N

1 n
lim = log P(Z eil(Dit) > na) = —q(t),
i=1

where q(t) equals

2
a7

t d 2 :
Zk:l Zp:l ht—k,p
Note that it strictly reduces with t.

@ Similar results when m, — 0.

Juneja Portfolio Risk
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Incorporating contagion in tail effects

@ Suppose that A; denotes the random amount of the weighted
defaults observed at time t.
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Incorporating contagion in tail effects

@ Suppose that A; denotes the random amount of the weighted
defaults observed at time t.

@ For each obligor /i, the conditional default probability in period
[t,t + 1) has the form

P = F(—a + mn(B+ alld) T Xe + Mincae Z:)

where Z; is an independent Gaussian random variable.

@ Large A; increases the sensitivity of default probability to global
factors.

o Large A; impacts the negative sentiment Z;.
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Incorporating contagion in tail effects

e When 1, — 0 and n'/2/, — oo, the above scaling allows both
and ¢ to show up in the large deviations tail exponent of large loss
probabilities.
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Incorporating contagion in tail effects

e When 1, — 0 and n'/2/, — oo, the above scaling allows both
and ¢ to show up in the large deviations tail exponent of large loss
probabilities.

@ When m, = n—1/2

deviations rate.

, idiosyncratic defaults also contribute to the large
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Fast Simulation of Large Losses




lllustrative rare event simulation problem

@ Consider the problem of estimating probability of eighty or more
heads in hundred tosses of a fair coin. (5.58 x 10~10).
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lllustrative rare event simulation problem

@ Consider the problem of estimating probability of eighty or more
heads in hundred tosses of a fair coin. (5.58 x 10~10).

@ Estimator from average of n independent samples

1
EZ/,-(Xl—i-Xz—l—"'—i-Xloo > 80).
i=1

@ On average 1.8 x 10° samples needed to observe a successful sample

@ 2.75 x 10'? trials needed to get 95% confidence interval of width 5%
of the true value.

Juneja Portfolio Risk 48 / 55



Importance sampling to the rescue

@ Generate these samples under a new distribution such that X;'s
independently equal 1 with probability p.
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Importance sampling to the rescue

@ Generate these samples under a new distribution such that X;'s
independently equal 1 with probability p.

@ Unbias the result using the ‘likelihood ratio’

(1/2)Z55 %i(1/2)100- 2% X
PN (1 — py1o0- % X

1 n
EZI;(X1+--~+X100280)
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Importance sampling to the rescue

@ Generate these samples under a new distribution such that X;'s
independently equal 1 with probability p.

@ Unbias the result using the ‘likelihood ratio’

(1/2)Z55 %i(1/2)100- 2% X
PN (1 — )10 IS X;

1 n
EZI;(X1+--~+X100280)

@ When p = 0.8, 7,932 samples needed for 5% relative accuracy
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Importance sampling to the rescue

@ Generate these samples under a new distribution such that X;'s
independently equal 1 with probability p.

@ Unbias the result using the ‘likelihood ratio’

(1/2)Z55 %i(1/2)100- 2% X
PN (1 — py1o0- % X

1 n
EZI;(X1+--~+X100280)

@ When p = 0.8, 7,932 samples needed for 5% relative accuracy

@ When p = 0.99, 3.69 x 10?2 samples needed for 5% relative accuracy.
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Importance sampling

o Consider estimating the rare event probability P(A).

f(x)
ea F*(x)

P(A) = EI(A) = / _ f(x)ax = / F*(x)dx = E*[LI(A)]

X

(x)

where L(x) = % is called the likelihood ratio.
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Importance sampling

o Consider estimating the rare event probability P(A).
f(x)
ea F*(x)

where L(x) = ff*(f;)) is called the likelihood ratio.

P(A) = EI(A) = / _ f(x)ax = / F*(x)dx = E*[LI(A)]

X

e Estimation strategy: Generate independent samples of L [(A) using
f*. Their average is an unbiased and consistent estimator of P(A).
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@ Challenge is to find f* that minimizes the variance or the second
moment of the estimator L x /(A).

e (1) rom- (85
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@ Challenge is to find f* that minimizes the variance or the second
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e (1) rom- (85

@ Therefore, whenever f(x) is large, f*(x) should be large - Should
emphasize most likely paths.
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@ Challenge is to find f* that minimizes the variance or the second
moment of the estimator L x /(A).

e (1) rom- (85

@ Therefore, whenever f(x) is large, f*(x) should be large - Should
emphasize most likely paths.

@ *(x) should never be much smaller than f(x) along A.
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Issues with importance Sampling

Process

mean H @)

{Iso large deviations rt fn curve}

@ First illustrated by Sadowsky and Bucklew (1991).
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In our problem

@ For loss probabilities of order 1 in a 1000, one can expect 100-150
times speed up using an implementable asymptotically optimal
importance sampling distribution.
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Comments and Conclusions

@ Using Taylor expansion, same approximations for non-Gaussian light
tailed variables, if the corresponding 3 are small.
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Comments and Conclusions

@ Using Taylor expansion, same approximations for non-Gaussian light
tailed variables, if the corresponding 3 are small.

@ Developed closed form expressions for approximations to MLE.

@ Conducted asymptotic analysis to prove effectiveness of proposed
estimators and empirically verified strong performance relative to
existing methods.

@ If the underlying model is wrong (the only truth in this talk so far),
the exact method and the approximate one are equally bad!

@ Developed an asymptotic framework and conducted large deviations
methodology for joint distribution of large losses for portfolio credit
risk.

@ Proposed provably efficient fast simulation techniques for the
portfolio model.
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